import warnings from typing import Dict, Iterable, Iterator, List, Tuple, Union, cast from ..errors import Errors, Warnings from ..tokens import Doc, Span def iob_to_biluo(tags: Iterable[str]) -> List[str]: out: List[str] = [] tags = list(tags) while tags: out.extend(_consume_os(tags)) out.extend(_consume_ent(tags)) return out def biluo_to_iob(tags: Iterable[str]) -> List[str]: out = [] for tag in tags: if tag is None: out.append(tag) else: tag = tag.replace("U-", "B-", 1).replace("L-", "I-", 1) out.append(tag) return out def _consume_os(tags: List[str]) -> Iterator[str]: while tags and tags[0] == "O": yield tags.pop(0) def _consume_ent(tags: List[str]) -> List[str]: if not tags: return [] tag = tags.pop(0) target_in = "I" + tag[1:] target_last = "L" + tag[1:] length = 1 while tags and tags[0] in {target_in, target_last}: length += 1 tags.pop(0) label = tag[2:] if length == 1: if len(label) == 0: raise ValueError(Errors.E177.format(tag=tag)) return ["U-" + label] else: start = "B-" + label end = "L-" + label middle = [f"I-{label}" for _ in range(1, length - 1)] return [start] + middle + [end] def doc_to_biluo_tags(doc: Doc, missing: str = "O"): return offsets_to_biluo_tags( doc, [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents], missing=missing, ) def _doc_to_biluo_tags_with_partial(doc: Doc) -> List[str]: ents = doc_to_biluo_tags(doc, missing="-") for i, token in enumerate(doc): if token.ent_iob == 2: ents[i] = "O" return ents def offsets_to_biluo_tags( doc: Doc, entities: Iterable[Tuple[int, int, Union[str, int]]], missing: str = "O" ) -> List[str]: """Encode labelled spans into per-token tags, using the Begin/In/Last/Unit/Out scheme (BILUO). doc (Doc): The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. entities (iterable): A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. missing (str): The label used for missing values, e.g. if tokenization doesn’t align with the entity offsets. Defaults to "O". RETURNS (list): A list of unicode strings, describing the tags. Each tag string will be of the form either "", "O" or "{action}-{label}", where action is one of "B", "I", "L", "U". The missing label is used where the entity offsets don't align with the tokenization in the `Doc` object. The training algorithm will view these as missing values. "O" denotes a non-entity token. "B" denotes the beginning of a multi-token entity, "I" the inside of an entity of three or more tokens, and "L" the end of an entity of two or more tokens. "U" denotes a single-token entity. EXAMPLE: >>> text = 'I like London.' >>> entities = [(len('I like '), len('I like London'), 'LOC')] >>> doc = nlp.tokenizer(text) >>> tags = offsets_to_biluo_tags(doc, entities) >>> assert tags == ["O", "O", 'U-LOC', "O"] """ # Ensure no overlapping entity labels exist tokens_in_ents: Dict[int, Tuple[int, int, Union[str, int]]] = {} starts = {token.idx: token.i for token in doc} ends = {token.idx + len(token): token.i for token in doc} biluo = ["-" for _ in doc] # Handle entity cases for start_char, end_char, label in entities: if not label: for s in starts: # account for many-to-one if s >= start_char and s < end_char: biluo[starts[s]] = "O" else: for token_index in range(start_char, end_char): if token_index in tokens_in_ents.keys(): raise ValueError( Errors.E103.format( span1=( tokens_in_ents[token_index][0], tokens_in_ents[token_index][1], tokens_in_ents[token_index][2], ), span2=(start_char, end_char, label), ) ) tokens_in_ents[token_index] = (start_char, end_char, label) start_token = starts.get(start_char) end_token = ends.get(end_char) # Only interested if the tokenization is correct if start_token is not None and end_token is not None: if start_token == end_token: biluo[start_token] = f"U-{label}" else: biluo[start_token] = f"B-{label}" for i in range(start_token + 1, end_token): biluo[i] = f"I-{label}" biluo[end_token] = f"L-{label}" # Now distinguish the O cases from ones where we miss the tokenization entity_chars = set() for start_char, end_char, label in entities: for i in range(start_char, end_char): entity_chars.add(i) for token in doc: for i in range(token.idx, token.idx + len(token)): if i in entity_chars: break else: biluo[token.i] = missing if "-" in biluo and missing != "-": ent_str = str(entities) warnings.warn( Warnings.W030.format( text=doc.text[:50] + "..." if len(doc.text) > 50 else doc.text, entities=ent_str[:50] + "..." if len(ent_str) > 50 else ent_str, ) ) return biluo def biluo_tags_to_spans(doc: Doc, tags: Iterable[str]) -> List[Span]: """Encode per-token tags following the BILUO scheme into Span object, e.g. to overwrite the doc.ents. doc (Doc): The document that the BILUO tags refer to. tags (iterable): A sequence of BILUO tags with each tag describing one token. Each tag string will be of the form of either "", "O" or "{action}-{label}", where action is one of "B", "I", "L", "U". RETURNS (list): A sequence of Span objects. Each token with a missing IOB tag is returned as a Span with an empty label. """ token_offsets = tags_to_entities(tags) spans = [] for label, start_idx, end_idx in token_offsets: span = Span(doc, start_idx, end_idx + 1, label=label) spans.append(span) return spans def biluo_tags_to_offsets( doc: Doc, tags: Iterable[str] ) -> List[Tuple[int, int, Union[str, int]]]: """Encode per-token tags following the BILUO scheme into entity offsets. doc (Doc): The document that the BILUO tags refer to. tags (iterable): A sequence of BILUO tags with each tag describing one token. Each tags string will be of the form of either "", "O" or "{action}-{label}", where action is one of "B", "I", "L", "U". RETURNS (list): A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. """ spans = biluo_tags_to_spans(doc, tags) return [(span.start_char, span.end_char, span.label_) for span in spans] def tags_to_entities(tags: Iterable[str]) -> List[Tuple[str, int, int]]: """Note that the end index returned by this function is inclusive. To use it for Span creation, increment the end by 1.""" entities = [] start = None for i, tag in enumerate(tags): if tag is None or tag.startswith("-"): # TODO: We shouldn't be getting these malformed inputs. Fix this. if start is not None: start = None else: entities.append(("", i, i)) elif tag.startswith("O"): pass elif tag.startswith("I"): if start is None: raise ValueError( Errors.E067.format(start="I", tags=list(tags)[: i + 1]) ) elif tag.startswith("U"): entities.append((tag[2:], i, i)) elif tag.startswith("B"): start = i elif tag.startswith("L"): if start is None: raise ValueError( Errors.E067.format(start="L", tags=list(tags)[: i + 1]) ) entities.append((tag[2:], start, i)) start = None else: raise ValueError(Errors.E068.format(tag=tag)) return entities def split_bilu_label(label: str) -> Tuple[str, str]: return cast(Tuple[str, str], label.split("-", 1)) def remove_bilu_prefix(label: str) -> str: return label.split("-", 1)[1] # Fallbacks to make backwards-compat easier offsets_from_biluo_tags = biluo_tags_to_offsets spans_from_biluo_tags = biluo_tags_to_spans biluo_tags_from_offsets = offsets_to_biluo_tags