from typing import Callable, Dict, Iterable, List, Optional, Tuple, cast from dataclasses import dataclass import numpy from thinc.api import Config, Model from thinc.types import Floats2d, Ints2d, Ragged from ..language import Language from ..tokens import Doc, Span, SpanGroup from ..training import Example from ..vocab import Vocab from .spancat import spancat_score, Suggester from .spancat import SpanCategorizer spancat_excl_default_config = """ [model] @architectures = "spacy.SpanCategorizer.v1" scorer = {"@layers": "Softmax.v2"} [model.reducer] @layers = spacy.mean_max_reducer.v1 hidden_size = 128 [model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v1" width = 96 rows = [5000, 2000, 1000, 1000] attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = ${model.tok2vec.embed.width} window_size = 1 maxout_pieces = 3 depth = 4 """ DEFAULT_EXCL_SPANCAT_MODEL = Config().from_str(spancat_excl_default_config)["model"] @Language.factory( "spancat_exclusive", assigns=["doc.spans"], default_config={ "spans_key": "sc", "model": DEFAULT_EXCL_SPANCAT_MODEL, "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]}, "scorer": {"@scorers": "spacy.spancat_scorer.v1"}, }, default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0}, ) def make_spancat( nlp: Language, name: str, suggester: Suggester, model: Model[Tuple[List[Doc], Ragged], Floats2d], spans_key: str, scorer: Optional[Callable], negative_weight: float = 1.0, allow_overlap: bool = True, ) -> "Exclusive_SpanCategorizer": """Create a SpanCategorizerExclusive component. The span categorizer consists of two parts: a suggester function that proposes candidate spans, and a labeler model that predicts a single label for each span. suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans. Spans are returned as a ragged array with two integer columns, for the start and end positions. model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that is given a list of documents and (start, end) indices representing candidate span offsets. The model predicts a probability for each category for each span. spans_key (str): Key of the doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_spans for the Doc.spans[spans_key] with overlapping spans allowed. negative_weight (float): Multiplier for the loss terms. Can be used to downweight the negative samples if there are too many. allow_overlap (bool): If True the data is assumed to contain overlapping spans. """ return Exclusive_SpanCategorizer( nlp.vocab, suggester=suggester, model=model, spans_key=spans_key, negative_weight=negative_weight, name=name, scorer=scorer, allow_overlap=allow_overlap, ) @dataclass class Ranges: """ Helper class to avoid storing overlapping spans. """ def __init__(self): self.ranges = set() def add(self, i, j): for e in range(i, j): self.ranges.add(e) def __contains__(self, rang): i, j = rang for e in range(i, j): if e in self.ranges: return True return False class Exclusive_SpanCategorizer(SpanCategorizer): """Pipeline component to label spans with exclusive classes. DOCS: https://spacy.io/api/spancatcategorizer """ def __init__( self, vocab: Vocab, model: Model[Tuple[List[Doc], Ragged], Floats2d], suggester: Suggester, name: str = "spancat_exclusive", *, spans_key: str = "spans", negative_weight: float = 1.0, allow_overlap: bool = True, scorer: Optional[Callable] = spancat_score, ) -> None: """Initialize the span categorizer. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. spans_key (str): Key of the Doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"spans"`. negative_weight (float): Multiplier for the loss terms. Can be used to down weigh the negative samples if there are too many. allow_overlap (bool): If True the data is assumed to contain overlapping spans. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_spans for the Doc.spans[spans_key] with overlapping spans allowed. DOCS: https://spacy.io/api/spancatcategorizer#init """ self.cfg = { "labels": [], "spans_key": spans_key, "negative_weight": negative_weight, "allow_overlap": allow_overlap, } self.vocab = vocab self.suggester = suggester self.model = model self.name = name self.scorer = scorer @property def label_map(self) -> Dict[str, int]: """RETURNS (Dict[str, int]): The label map.""" return {label: i for i, label in enumerate(self.labels)} @property def _negative_label(self) -> int: """RETURNS (int): Index of the negative label.""" return len(self.label_data) @property def _n_labels(self) -> int: """RETURNS (int): Number of labels including the negative label.""" return len(self.label_data) + 1 def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None: """Modify a batch of Doc objects, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. scores: The scores to set, produced by SpanCategorizerExclusive.predict. DOCS: https://spacy.io/api/spancatcategorizer#set_annotations """ allow_overlap = cast(bool, self.cfg["allow_overlap"]) labels = list(self.labels) indices, scores = indices_scores offset = 0 for i, doc in enumerate(docs): indices_i = indices[i].dataXd doc.spans[self.key] = self._make_span_group( doc, indices_i, scores[offset : offset + indices.lengths[i]], labels, allow_overlap, ) offset += indices.lengths[i] def get_loss( self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d] ) -> Tuple[float, float]: """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. spans_scores: Scores representing the model's predictions. RETURNS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/spancatcategorizer#get_loss """ spans, scores = spans_scores spans = Ragged( self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths) ) target = numpy.zeros(scores.shape, dtype=scores.dtype) # Set negative class as target initially for all samples. negative_spans = numpy.ones((scores.shape[0])) offset = 0 for i, eg in enumerate(examples): # Map (start, end) offset of spans to the row in the # d_scores array, so that we can adjust the gradient # for predictions that were in the gold standard. spans_index = {} spans_i = spans[i].dataXd for j in range(spans.lengths[i]): start = int(spans_i[j, 0]) # type: ignore end = int(spans_i[j, 1]) # type: ignore spans_index[(start, end)] = offset + j for gold_span in self._get_aligned_spans(eg): key = (gold_span.start, gold_span.end) if key in spans_index: row = spans_index[key] k = self.label_map[gold_span.label_] target[row, k] = 1.0 # delete negative label target. negative_spans[row] = 0.0 # The target is a flat array for all docs. Track the position # we're at within the flat array. offset += spans.lengths[i] target = self.model.ops.asarray(target, dtype="f") # type: ignore negative_samples = numpy.nonzero(negative_spans)[0] target[negative_samples, self._negative_label] = 1.0 # type: ignore d_scores = scores - target neg_weight = cast(float, self.cfg["negative_weight"]) if neg_weight != 1.0: d_scores[negative_samples] *= neg_weight loss = float((d_scores**2).sum()) return loss, d_scores def _make_span_group( self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str], allow_overlap: bool = True, ) -> SpanGroup: scores = self.model.ops.to_numpy(scores) indices = self.model.ops.to_numpy(indices) predicted = scores.argmax(axis=1) # Remove samples where the negative label is the argmax positive = numpy.where(predicted != self._negative_label)[0] predicted = predicted[positive] indices = indices[positive] # Sort spans according to argmax probability if not allow_overlap: # Get the probabilities argmax_probs = numpy.take_along_axis( scores[positive], numpy.expand_dims(predicted, 1), axis=1 ) argmax_probs = argmax_probs.squeeze() sort_idx = (argmax_probs * -1).argsort() predicted = predicted[sort_idx] indices = indices[sort_idx] seen = Ranges() spans = SpanGroup(doc, name=self.key) for i in range(len(predicted)): label = predicted[i] start = indices[i, 0] end = indices[i, 1] if not allow_overlap: if (start, end) in seen: continue else: seen.add(start, end) spans.append(Span(doc, start, end, label=labels[label])) return spans