from numpy.testing import assert_equal from spacy.language import Language from spacy.training import Example from spacy.util import fix_random_seed, registry SPAN_KEY = "labeled_spans" TRAIN_DATA = [ ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}), ( "I like London and Berlin.", {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}}, ), ] def make_get_examples(nlp): train_examples = [] for t in TRAIN_DATA: eg = Example.from_dict(nlp.make_doc(t[0]), t[1]) train_examples.append(eg) def get_examples(): return train_examples return get_examples def test_simple_train(): fix_random_seed(0) nlp = Language() spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) get_examples = make_get_examples(nlp) nlp.initialize(get_examples) sgd = nlp.create_optimizer() assert len(spancat.labels) != 0 for i in range(40): losses = {} nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd) doc = nlp("I like London and Berlin.") assert doc.spans[spancat.key] == doc.spans[SPAN_KEY] assert len(doc.spans[spancat.key]) == 2 assert doc.spans[spancat.key][0].text == "London" scores = nlp.evaluate(get_examples()) assert f"spans_{SPAN_KEY}_f" in scores assert scores[f"spans_{SPAN_KEY}_f"] == 1.0 def test_ngram_suggester(en_tokenizer): # test different n-gram lengths for size in [1, 2, 3]: ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[size]) docs = [ en_tokenizer(text) for text in [ "a", "a b", "a b c", "a b c d", "a b c d e", "a " * 100, ] ] ngrams = ngram_suggester(docs) # span sizes are correct for s in ngrams.data: assert s[1] - s[0] == size # spans are within docs offset = 0 for i, doc in enumerate(docs): spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]] spans_set = set() for span in spans: assert 0 <= span[0] < len(doc) assert 0 < span[1] <= len(doc) spans_set.add((span[0], span[1])) # spans are unique assert spans.shape[0] == len(spans_set) offset += ngrams.lengths[i] # the number of spans is correct assert_equal(ngrams.lengths, [max(0, len(doc) - (size - 1)) for doc in docs]) # test 1-3-gram suggestions ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1, 2, 3]) docs = [ en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"] ] ngrams = ngram_suggester(docs) assert_equal(ngrams.lengths, [1, 3, 6, 9, 12]) assert_equal( ngrams.data, [ # doc 0 [0, 1], # doc 1 [0, 1], [1, 2], [0, 2], # doc 2 [0, 1], [1, 2], [2, 3], [0, 2], [1, 3], [0, 3], # doc 3 [0, 1], [1, 2], [2, 3], [3, 4], [0, 2], [1, 3], [2, 4], [0, 3], [1, 4], # doc 4 [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [0, 2], [1, 3], [2, 4], [3, 5], [0, 3], [1, 4], [2, 5], ], ) # test some empty docs ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1]) docs = [en_tokenizer(text) for text in ["", "a", ""]] ngrams = ngram_suggester(docs) assert_equal(ngrams.lengths, [len(doc) for doc in docs]) # test all empty docs ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1]) docs = [en_tokenizer(text) for text in ["", "", ""]] ngrams = ngram_suggester(docs) assert_equal(ngrams.lengths, [len(doc) for doc in docs])