--- title: Models & Languages next: usage/facts-figures menu: - ['Quickstart', 'quickstart'] - ['Language Support', 'languages'] - ['Installation & Usage', 'download'] - ['Production Use', 'production'] --- spaCy's models can be installed as **Python packages**. This means that they're a component of your application, just like any other module. They're versioned and can be defined as a dependency in your `requirements.txt`. Models can be installed from a download URL or a local directory, manually or via [pip](https://pypi.python.org/pypi/pip). Their data can be located anywhere on your file system. > #### Important note > > If you're upgrading to spaCy v3.x, you need to **download the new models**. If > you've trained statistical models that use spaCy's annotations, you should > **retrain your models** after updating spaCy. If you don't retrain, you may > suffer train/test skew, which might decrease your accuracy. ## Quickstart {hidden="true"} import QuickstartModels from 'widgets/quickstart-models.js' <QuickstartModels title="Quickstart" id="quickstart" description="Install a default model, get the code to load it from within spaCy and an example to test it. For more options, see the section on available models below." /> ## Language support {#languages} spaCy currently provides support for the following languages. You can help by [improving the existing language data](/usage/adding-languages#language-data) and extending the tokenization patterns. [See here](https://github.com/explosion/spaCy/issues/3056) for details on how to contribute to model development. > #### Usage note > > If a model is available for a language, you can download it using the > [`spacy download`](/api/cli#download) command. In order to use languages that > don't yet come with a model, you have to import them directly, or use > [`spacy.blank`](/api/top-level#spacy.blank): > > ```python > from spacy.lang.fi import Finnish > nlp = Finnish() # use directly > nlp = spacy.blank("fi") # blank instance > ``` > > If lemmatization rules are available for your language, make sure to install > spaCy with the `lookups` option, or install > [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) > separately in the same environment: > > ```bash > $ pip install spacy[lookups] > ``` import Languages from 'widgets/languages.js' <Languages /> ### Multi-language support {#multi-language new="2"} > ```python > # Standard import > from spacy.lang.xx import MultiLanguage > nlp = MultiLanguage() > > # With lazy-loading > from spacy.util import get_lang_class > nlp = get_lang_class('xx') > ``` spaCy also supports models trained on more than one language. This is especially useful for named entity recognition. The language ID used for multi-language or language-neutral models is `xx`. The language class, a generic subclass containing only the base language data, can be found in [`lang/xx`](https://github.com/explosion/spaCy/tree/master/spacy/lang/xx). To load your model with the neutral, multi-language class, simply set `"language": "xx"` in your [model package](/usage/training#models-generating)'s `meta.json`. You can also import the class directly, or call [`util.get_lang_class()`](/api/top-level#util.get_lang_class) for lazy-loading. ### Chinese language support {#chinese new=2.3} The Chinese language class supports three word segmentation options: > ```python > from spacy.lang.zh import Chinese > > # Disable jieba to use character segmentation > Chinese.Defaults.use_jieba = False > nlp = Chinese() > > # Disable jieba through tokenizer config options > cfg = {"use_jieba": False} > nlp = Chinese(meta={"tokenizer": {"config": cfg}}) > > # Load with "default" model provided by pkuseg > cfg = {"pkuseg_model": "default", "require_pkuseg": True} > nlp = Chinese(meta={"tokenizer": {"config": cfg}}) > ``` 1. **Jieba:** `Chinese` uses [Jieba](https://github.com/fxsjy/jieba) for word segmentation by default. It's enabled when you create a new `Chinese` language class or call `spacy.blank("zh")`. 2. **Character segmentation:** Character segmentation is supported by disabling `jieba` and setting `Chinese.Defaults.use_jieba = False` _before_ initializing the language class. As of spaCy v2.3.0, the `meta` tokenizer config options can be used to configure `use_jieba`. 3. **PKUSeg**: In spaCy v2.3.0, support for [PKUSeg](https://github.com/lancopku/PKUSeg-python) has been added to support better segmentation for Chinese OntoNotes and the new [Chinese models](/models/zh). <Infobox variant="warning"> Note that [`pkuseg`](https://github.com/lancopku/pkuseg-python) doesn't yet ship with pre-compiled wheels for Python 3.8. If you're running Python 3.8, you can install it from our fork and compile it locally: ```bash $ pip install https://github.com/honnibal/pkuseg-python/archive/master.zip ``` </Infobox> <Accordion title="Details on spaCy's PKUSeg API"> The `meta` argument of the `Chinese` language class supports the following following tokenizer config settings: | Name | Type | Description | | ------------------ | ---- | ---------------------------------------------------------------------------------------------------- | | `pkuseg_model` | str | **Required:** Name of a model provided by `pkuseg` or the path to a local model directory. | | `pkuseg_user_dict` | str | Optional path to a file with one word per line which overrides the default `pkuseg` user dictionary. | | `require_pkuseg` | bool | Overrides all `jieba` settings (optional but strongly recommended). | ```python ### Examples # Load "default" model cfg = {"pkuseg_model": "default", "require_pkuseg": True} nlp = Chinese(meta={"tokenizer": {"config": cfg}}) # Load local model cfg = {"pkuseg_model": "/path/to/pkuseg_model", "require_pkuseg": True} nlp = Chinese(meta={"tokenizer": {"config": cfg}}) # Override the user directory cfg = {"pkuseg_model": "default", "require_pkuseg": True, "pkuseg_user_dict": "/path"} nlp = Chinese(meta={"tokenizer": {"config": cfg}}) ``` You can also modify the user dictionary on-the-fly: ```python # Append words to user dict nlp.tokenizer.pkuseg_update_user_dict(["中国", "ABC"]) # Remove all words from user dict and replace with new words nlp.tokenizer.pkuseg_update_user_dict(["中国"], reset=True) # Remove all words from user dict nlp.tokenizer.pkuseg_update_user_dict([], reset=True) ``` </Accordion> <Accordion title="Details on pretrained and custom Chinese models"> The [Chinese models](/models/zh) provided by spaCy include a custom `pkuseg` model trained only on [Chinese OntoNotes 5.0](https://catalog.ldc.upenn.edu/LDC2013T19), since the models provided by `pkuseg` include data restricted to research use. For research use, `pkuseg` provides models for several different domains (`"default"`, `"news"` `"web"`, `"medicine"`, `"tourism"`) and for other uses, `pkuseg` provides a simple [training API](https://github.com/lancopku/pkuseg-python/blob/master/readme/readme_english.md#usage): ```python import pkuseg from spacy.lang.zh import Chinese # Train pkuseg model pkuseg.train("train.utf8", "test.utf8", "/path/to/pkuseg_model") # Load pkuseg model in spaCy Chinese tokenizer nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_model", "require_pkuseg": True}}}) ``` </Accordion> ### Japanese language support {#japanese new=2.3} > ```python > from spacy.lang.ja import Japanese > > # Load SudachiPy with split mode A (default) > nlp = Japanese() > > # Load SudachiPy with split mode B > cfg = {"split_mode": "B"} > nlp = Japanese(meta={"tokenizer": {"config": cfg}}) > ``` The Japanese language class uses [SudachiPy](https://github.com/WorksApplications/SudachiPy) for word segmentation and part-of-speech tagging. The default Japanese language class and the provided Japanese models use SudachiPy split mode `A`. The `meta` argument of the `Japanese` language class can be used to configure the split mode to `A`, `B` or `C`. <Infobox variant="warning"> If you run into errors related to `sudachipy`, which is currently under active development, we suggest downgrading to `sudachipy==0.4.5`, which is the version used for training the current [Japanese models](/models/ja). </Infobox> ## Installing and using models {#download} The easiest way to download a model is via spaCy's [`download`](/api/cli#download) command. It takes care of finding the best-matching model compatible with your spaCy installation. > #### Important note for v3.0 > > Note that as of spaCy v3.0, model shortcut links that create (potentially > brittle) symlinks in your spaCy installation are **deprecated**. To download > and load an installed model, use its full name: > > ```diff > - python -m spacy download en > + python -m spacy dowmload en_core_web_sm > ``` > > ```diff > - nlp = spacy.load("en") > + nlp = spacy.load("en_core_web_sm") > ``` ```bash # Download best-matching version of specific model for your spaCy installation python -m spacy download en_core_web_sm # Download exact model version python -m spacy download en_core_web_sm-2.2.0 --direct ``` The download command will [install the model](/usage/models#download-pip) via pip and place the package in your `site-packages` directory. ```bash pip install spacy python -m spacy download en_core_web_sm ``` ```python import spacy nlp = spacy.load("en_core_web_sm") doc = nlp("This is a sentence.") ``` ### Installation via pip {#download-pip} To download a model directly using [pip](https://pypi.python.org/pypi/pip), point `pip install` to the URL or local path of the archive file. To find the direct link to a model, head over to the [model releases](https://github.com/explosion/spacy-models/releases), right click on the archive link and copy it to your clipboard. ```bash # With external URL pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz # With local file pip install /Users/you/en_core_web_sm-3.0.0.tar.gz ``` By default, this will install the model into your `site-packages` directory. You can then use `spacy.load()` to load it via its package name or [import it](#usage-import) explicitly as a module. If you need to download models as part of an automated process, we recommend using pip with a direct link, instead of relying on spaCy's [`download`](/api/cli#download) command. You can also add the direct download link to your application's `requirements.txt`. For more details, see the section on [working with models in production](#production). ### Manual download and installation {#download-manual} In some cases, you might prefer downloading the data manually, for example to place it into a custom directory. You can download the model via your browser from the [latest releases](https://github.com/explosion/spacy-models/releases), or configure your own download script using the URL of the archive file. The archive consists of a model directory that contains another directory with the model data. ```yaml ### Directory structure {highlight="7"} └── en_core_web_md-3.0.0.tar.gz # downloaded archive ├── meta.json # model meta data ├── setup.py # setup file for pip installation └── en_core_web_md # 📦 model package ├── __init__.py # init for pip installation ├── meta.json # model meta data └── en_core_web_md-3.0.0 # model data ``` You can place the **model package directory** anywhere on your local file system. ### Using models with spaCy {#usage} To load a model, use [`spacy.load`](/api/top-level#spacy.load) with the model's package name or a path to the data directory: > #### Important note for v3.0 > > Note that as of spaCy v3.0, model shortcut links that create (potentially > brittle) symlinks in your spaCy installation are **deprecated**. To load an > installed model, use its full name: > > ```diff > - nlp = spacy.load("en") > + nlp = spacy.load("en_core_web_sm") > ``` ```python import spacy nlp = spacy.load("en_core_web_sm") # load model package "en_core_web_sm" nlp = spacy.load("/path/to/en_core_web_sm") # load package from a directory doc = nlp("This is a sentence.") ``` <Infobox title="Tip: Preview model info"> You can use the [`info`](/api/cli#info) command or [`spacy.info()`](/api/top-level#spacy.info) method to print a model's meta data before loading it. Each `Language` object with a loaded model also exposes the model's meta data as the attribute `meta`. For example, `nlp.meta['version']` will return the model's version. </Infobox> ### Importing models as modules {#usage-import} If you've installed a model via spaCy's downloader, or directly via pip, you can also `import` it and then call its `load()` method with no arguments: ```python ### {executable="true"} import en_core_web_sm nlp = en_core_web_sm.load() doc = nlp("This is a sentence.") ``` How you choose to load your models ultimately depends on personal preference. However, **for larger code bases**, we usually recommend native imports, as this will make it easier to integrate models with your existing build process, continuous integration workflow and testing framework. It'll also prevent you from ever trying to load a model that is not installed, as your code will raise an `ImportError` immediately, instead of failing somewhere down the line when calling `spacy.load()`. For more details, see the section on [working with models in production](#production). ### Using your own models {#own-models} If you've trained your own model, for example for [additional languages](/usage/adding-languages) or [custom named entities](/usage/training#ner), you can save its state using the [`Language.to_disk()`](/api/language#to_disk) method. To make the model more convenient to deploy, we recommend wrapping it as a Python package. For more information and a detailed guide on how to package your model, see the documentation on [saving and loading models](/usage/saving-loading#models). ## Using models in production {#production} If your application depends on one or more models, you'll usually want to integrate them into your continuous integration workflow and build process. While spaCy provides a range of useful helpers for downloading, linking and loading models, the underlying functionality is entirely based on native Python packages. This allows your application to handle a model like any other package dependency. <!-- TODO: reference relevant spaCy project --> ### Downloading and requiring model dependencies {#models-download} spaCy's built-in [`download`](/api/cli#download) command is mostly intended as a convenient, interactive wrapper. It performs compatibility checks and prints detailed error messages and warnings. However, if you're downloading models as part of an automated build process, this only adds an unnecessary layer of complexity. If you know which models your application needs, you should be specifying them directly. Because all models are valid Python packages, you can add them to your application's `requirements.txt`. If you're running your own internal PyPi installation, you can upload the models there. pip's [requirements file format](https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format) supports both package names to download via a PyPi server, as well as direct URLs. ```text ### requirements.txt spacy>=2.2.0,<3.0.0 https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz#egg=en_core_web_sm ``` Specifying `#egg=` with the package name tells pip which package to expect from the download URL. This way, the package won't be re-downloaded and overwritten if it's already installed - just like when you're downloading a package from PyPi. All models are versioned and specify their spaCy dependency. This ensures cross-compatibility and lets you specify exact version requirements for each model. If you've trained your own model, you can use the [`package`](/api/cli#package) command to generate the required meta data and turn it into a loadable package. ### Loading and testing models {#models-loading} Models are regular Python packages, so you can also import them as a package using Python's native `import` syntax, and then call the `load` method to load the model data and return an `nlp` object: ```python import en_core_web_sm nlp = en_core_web_sm.load() ``` In general, this approach is recommended for larger code bases, as it's more "native", and doesn't depend on symlinks or rely on spaCy's loader to resolve string names to model packages. If a model can't be imported, Python will raise an `ImportError` immediately. And if a model is imported but not used, any linter will catch that. Similarly, it'll give you more flexibility when writing tests that require loading models. For example, instead of writing your own `try` and `except` logic around spaCy's loader, you can use [pytest](http://pytest.readthedocs.io/en/latest/)'s [`importorskip()`](https://docs.pytest.org/en/latest/builtin.html#_pytest.outcomes.importorskip) method to only run a test if a specific model or model version is installed. Each model package exposes a `__version__` attribute which you can also use to perform your own version compatibility checks before loading a model.