import pytest from spacy.language import Language from spacy.lang.en import English from spacy.lang.de import German from spacy.tokens import Doc from spacy.util import registry, SimpleFrozenDict, combine_score_weights from thinc.api import Model, Linear from thinc.config import ConfigValidationError from pydantic import StrictInt, StrictStr from ..util import make_tempdir def test_pipe_function_component(): name = "test_component" @Language.component(name) def component(doc: Doc) -> Doc: return doc assert name in registry.factories nlp = Language() with pytest.raises(ValueError): nlp.add_pipe(component) nlp.add_pipe(name) assert name in nlp.pipe_names assert nlp.pipe_factories[name] == name assert Language.get_factory_meta(name) assert nlp.get_pipe_meta(name) pipe = nlp.get_pipe(name) assert pipe == component pipe = nlp.create_pipe(name) assert pipe == component def test_pipe_class_component_init(): name1 = "test_class_component1" name2 = "test_class_component2" @Language.factory(name1) class Component1: def __init__(self, nlp: Language, name: str): self.nlp = nlp def __call__(self, doc: Doc) -> Doc: return doc class Component2: def __init__(self, nlp: Language, name: str): self.nlp = nlp def __call__(self, doc: Doc) -> Doc: return doc @Language.factory(name2) def factory(nlp: Language, name=name2): return Component2(nlp, name) nlp = Language() for name, Component in [(name1, Component1), (name2, Component2)]: assert name in registry.factories with pytest.raises(ValueError): nlp.add_pipe(Component(nlp, name)) nlp.add_pipe(name) assert name in nlp.pipe_names assert nlp.pipe_factories[name] == name assert Language.get_factory_meta(name) assert nlp.get_pipe_meta(name) pipe = nlp.get_pipe(name) assert isinstance(pipe, Component) assert isinstance(pipe.nlp, Language) pipe = nlp.create_pipe(name) assert isinstance(pipe, Component) assert isinstance(pipe.nlp, Language) def test_pipe_class_component_config(): name = "test_class_component_config" @Language.factory(name) class Component: def __init__( self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr ): self.nlp = nlp self.value1 = value1 self.value2 = value2 self.is_base = True def __call__(self, doc: Doc) -> Doc: return doc @English.factory(name) class ComponentEN: def __init__( self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr ): self.nlp = nlp self.value1 = value1 self.value2 = value2 self.is_base = False def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() with pytest.raises(ConfigValidationError): # no config provided nlp.add_pipe(name) with pytest.raises(ConfigValidationError): # invalid config nlp.add_pipe(name, config={"value1": "10", "value2": "hello"}) nlp.add_pipe(name, config={"value1": 10, "value2": "hello"}) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert pipe.value2 == "hello" assert pipe.is_base is True nlp_en = English() with pytest.raises(ConfigValidationError): # invalid config nlp_en.add_pipe(name, config={"value1": "10", "value2": "hello"}) nlp_en.add_pipe(name, config={"value1": 10, "value2": "hello"}) pipe = nlp_en.get_pipe(name) assert isinstance(pipe.nlp, English) assert pipe.value1 == 10 assert pipe.value2 == "hello" assert pipe.is_base is False def test_pipe_class_component_defaults(): name = "test_class_component_defaults" @Language.factory(name) class Component: def __init__( self, nlp: Language, name: str, value1: StrictInt = 10, value2: StrictStr = "hello", ): self.nlp = nlp self.value1 = value1 self.value2 = value2 def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() nlp.add_pipe(name) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert pipe.value2 == "hello" def test_pipe_class_component_model(): name = "test_class_component_model" default_config = { "model": { "@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "window_size": 1, "conv_depth": 2, "ngram_size": 1, "dropout": None, }, "value1": 10, } @Language.factory(name, default_config=default_config) class Component: def __init__(self, nlp: Language, model: Model, name: str, value1: StrictInt): self.nlp = nlp self.model = model self.value1 = value1 self.name = name def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() nlp.add_pipe(name) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert isinstance(pipe.model, Model) def test_pipe_class_component_model_custom(): name = "test_class_component_model_custom" arch = f"{name}.arch" default_config = {"value1": 1, "model": {"@architectures": arch, "nO": 0, "nI": 0}} @Language.factory(name, default_config=default_config) class Component: def __init__( self, nlp: Language, model: Model, name: str, value1: StrictInt = 10 ): self.nlp = nlp self.model = model self.value1 = value1 self.name = name def __call__(self, doc: Doc) -> Doc: return doc @registry.architectures(arch) def make_custom_arch(nO: StrictInt, nI: StrictInt): return Linear(nO, nI) nlp = Language() config = {"value1": 20, "model": {"@architectures": arch, "nO": 1, "nI": 2}} nlp.add_pipe(name, config=config) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 20 assert isinstance(pipe.model, Model) assert pipe.model.name == "linear" nlp = Language() with pytest.raises(ConfigValidationError): config = {"value1": "20", "model": {"@architectures": arch, "nO": 1, "nI": 2}} nlp.add_pipe(name, config=config) with pytest.raises(ConfigValidationError): config = {"value1": 20, "model": {"@architectures": arch, "nO": 1.0, "nI": 2.0}} nlp.add_pipe(name, config=config) def test_pipe_factories_wrong_formats(): with pytest.raises(ValueError): # Decorator is not called @Language.component def component(foo: int, bar: str): ... with pytest.raises(ValueError): # Decorator is not called @Language.factory def factory1(foo: int, bar: str): ... with pytest.raises(ValueError): # Factory function is missing "nlp" and "name" arguments @Language.factory("test_pipe_factories_missing_args") def factory2(foo: int, bar: str): ... def test_pipe_factory_meta_config_cleanup(): """Test that component-specific meta and config entries are represented correctly and cleaned up when pipes are removed, replaced or renamed.""" nlp = Language() nlp.add_pipe("ner", name="ner_component") nlp.add_pipe("textcat") assert nlp.get_factory_meta("ner") assert nlp.get_pipe_meta("ner_component") assert nlp.get_pipe_config("ner_component") assert nlp.get_factory_meta("textcat") assert nlp.get_pipe_meta("textcat") assert nlp.get_pipe_config("textcat") nlp.rename_pipe("textcat", "tc") assert nlp.get_pipe_meta("tc") assert nlp.get_pipe_config("tc") with pytest.raises(ValueError): nlp.remove_pipe("ner") nlp.remove_pipe("ner_component") assert "ner_component" not in nlp._pipe_meta assert "ner_component" not in nlp._pipe_configs with pytest.raises(ValueError): nlp.replace_pipe("textcat", "parser") nlp.replace_pipe("tc", "parser") assert nlp.get_factory_meta("parser") assert nlp.get_pipe_meta("tc").factory == "parser" def test_pipe_factories_empty_dict_default(): """Test that default config values can be empty dicts and that no config validation error is raised.""" # TODO: fix this name = "test_pipe_factories_empty_dict_default" @Language.factory(name, default_config={"foo": {}}) def factory(nlp: Language, name: str, foo: dict): ... nlp = Language() nlp.create_pipe(name) def test_pipe_factories_language_specific(): """Test that language sub-classes can have their own factories, with fallbacks to the base factories.""" name1 = "specific_component1" name2 = "specific_component2" Language.component(name1, func=lambda: "base") English.component(name1, func=lambda: "en") German.component(name2, func=lambda: "de") assert Language.has_factory(name1) assert not Language.has_factory(name2) assert English.has_factory(name1) assert not English.has_factory(name2) assert German.has_factory(name1) assert German.has_factory(name2) nlp = Language() assert nlp.create_pipe(name1)() == "base" with pytest.raises(ValueError): nlp.create_pipe(name2) nlp_en = English() assert nlp_en.create_pipe(name1)() == "en" with pytest.raises(ValueError): nlp_en.create_pipe(name2) nlp_de = German() assert nlp_de.create_pipe(name1)() == "base" assert nlp_de.create_pipe(name2)() == "de" def test_language_factories_invalid(): """Test that assigning directly to Language.factories is now invalid and raises a custom error.""" assert isinstance(Language.factories, SimpleFrozenDict) with pytest.raises(NotImplementedError): Language.factories["foo"] = "bar" nlp = Language() assert isinstance(nlp.factories, SimpleFrozenDict) assert len(nlp.factories) with pytest.raises(NotImplementedError): nlp.factories["foo"] = "bar" @pytest.mark.parametrize( "weights,expected", [ ([{"a": 1.0}, {"b": 1.0}, {"c": 1.0}], {"a": 0.33, "b": 0.33, "c": 0.33}), ([{"a": 1.0}, {"b": 50}, {"c": 123}], {"a": 0.33, "b": 0.33, "c": 0.33}), ( [{"a": 0.7, "b": 0.3}, {"c": 1.0}, {"d": 0.5, "e": 0.5}], {"a": 0.23, "b": 0.1, "c": 0.33, "d": 0.17, "e": 0.17}, ), ( [{"a": 100, "b": 400}, {"c": 0.5, "d": 0.5}], {"a": 0.1, "b": 0.4, "c": 0.25, "d": 0.25}, ), ([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.25, "b": 0.75},), ], ) def test_language_factories_combine_score_weights(weights, expected): result = combine_score_weights(weights) assert sum(result.values()) in (0.99, 1.0) assert result == expected def test_language_factories_scores(): name = "test_language_factories_scores" func = lambda nlp, name: lambda doc: doc weights1 = {"a1": 0.5, "a2": 0.5} weights2 = {"b1": 0.2, "b2": 0.7, "b3": 0.1} Language.factory( f"{name}1", scores=list(weights1), default_score_weights=weights1, func=func, ) Language.factory( f"{name}2", scores=list(weights2), default_score_weights=weights2, func=func, ) meta1 = Language.get_factory_meta(f"{name}1") assert meta1.default_score_weights == weights1 meta2 = Language.get_factory_meta(f"{name}2") assert meta2.default_score_weights == weights2 nlp = Language() nlp._config["training"]["score_weights"] = {} nlp.add_pipe(f"{name}1") nlp.add_pipe(f"{name}2") cfg = nlp.config["training"] expected_weights = {"a1": 0.25, "a2": 0.25, "b1": 0.1, "b2": 0.35, "b3": 0.05} assert cfg["score_weights"] == expected_weights def test_pipe_factories_from_source(): """Test adding components from a source model.""" source_nlp = English() source_nlp.add_pipe("tagger", name="my_tagger") nlp = English() with pytest.raises(ValueError): nlp.add_pipe("my_tagger", source="en_core_web_sm") nlp.add_pipe("my_tagger", source=source_nlp) assert "my_tagger" in nlp.pipe_names with pytest.raises(KeyError): nlp.add_pipe("custom", source=source_nlp) def test_pipe_factories_from_source_custom(): """Test adding components from a source model with custom components.""" name = "test_pipe_factories_from_source_custom" @Language.factory(name, default_config={"arg": "hello"}) def test_factory(nlp, name, arg: str): return lambda doc: doc source_nlp = English() source_nlp.add_pipe("tagger") source_nlp.add_pipe(name, config={"arg": "world"}) nlp = English() nlp.add_pipe(name, source=source_nlp) assert name in nlp.pipe_names assert nlp.get_pipe_meta(name).default_config["arg"] == "hello" config = nlp.config["components"][name] assert config["factory"] == name assert config["arg"] == "world" def test_pipe_factories_from_source_config(): name = "test_pipe_factories_from_source_config" @Language.factory(name, default_config={"arg": "hello"}) def test_factory(nlp, name, arg: str): return lambda doc: doc source_nlp = English() source_nlp.add_pipe("tagger") source_nlp.add_pipe(name, name="yolo", config={"arg": "world"}) dest_nlp_cfg = {"lang": "en", "pipeline": ["parser", "custom"]} with make_tempdir() as tempdir: source_nlp.to_disk(tempdir) dest_components_cfg = { "parser": {"factory": "parser"}, "custom": {"source": str(tempdir), "component": "yolo"}, } dest_config = {"nlp": dest_nlp_cfg, "components": dest_components_cfg} nlp = English.from_config(dest_config) assert nlp.pipe_names == ["parser", "custom"] assert nlp.pipe_factories == {"parser": "parser", "custom": name} meta = nlp.get_pipe_meta("custom") assert meta.factory == name assert meta.default_config["arg"] == "hello" config = nlp.config["components"]["custom"] assert config["factory"] == name assert config["arg"] == "world"