# cython: infer_types=True, profile=True, binding=True from typing import Optional, Iterable from thinc.api import CosineDistance, to_categorical, get_array_module, Model, Config from ..syntax.nn_parser cimport Parser from ..syntax.arc_eager cimport ArcEager from .functions import merge_subtokens from ..language import Language from ..syntax import nonproj default_model_config = """ [model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 64 maxout_pieces = 2 [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true dropout = null """ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "parser", assigns=["token.dep", "token.is_sent_start", "doc.sents"], default_config={ "moves": None, "update_with_oracle_cut_size": 100, "multitasks": [], "learn_tokens": False, "min_action_freq": 30, "model": DEFAULT_PARSER_MODEL, } ) def make_parser( nlp: Language, name: str, model: Model, moves: Optional[list], update_with_oracle_cut_size: int, multitasks: Iterable, learn_tokens: bool, min_action_freq: int ): return DependencyParser( nlp.vocab, model, name, moves=moves, update_with_oracle_cut_size=update_with_oracle_cut_size, multitasks=multitasks, learn_tokens=learn_tokens, min_action_freq=min_action_freq ) cdef class DependencyParser(Parser): """Pipeline component for dependency parsing. DOCS: https://spacy.io/api/dependencyparser """ # cdef classes can't have decorators, so we're defining this here TransitionSystem = ArcEager @property def postprocesses(self): output = [nonproj.deprojectivize] if self.cfg.get("learn_tokens") is True: output.append(merge_subtokens) return tuple(output) def add_multitask_objective(self, mt_component): self._multitasks.append(mt_component) def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg): # TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ? for labeller in self._multitasks: labeller.model.set_dim("nO", len(self.labels)) if labeller.model.has_ref("output_layer"): labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels)) labeller.begin_training(get_examples, pipeline=pipeline, sgd=sgd) @property def labels(self): labels = set() # Get the labels from the model by looking at the available moves for move in self.move_names: if "-" in move: label = move.split("-")[1] if "||" in label: label = label.split("||")[1] labels.add(label) return tuple(sorted(labels))