import pytest from spacy import util from spacy.training import Example from spacy.lang.en import English from spacy.language import Language from spacy.tests.util import make_tempdir def test_label_types(): nlp = Language() senter = nlp.add_pipe("senter") with pytest.raises(NotImplementedError): senter.add_label("A") SENT_STARTS = [0] * 14 SENT_STARTS[0] = 1 SENT_STARTS[5] = 1 SENT_STARTS[9] = 1 TRAIN_DATA = [ ( "I like green eggs. Eat blue ham. I like purple eggs.", {"sent_starts": SENT_STARTS}, ), ( "She likes purple eggs. They hate ham. You like yellow eggs.", {"sent_starts": SENT_STARTS}, ), ] def test_initialize_examples(): nlp = Language() nlp.add_pipe("senter") train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) # you shouldn't really call this more than once, but for testing it should be fine nlp.initialize() nlp.initialize(get_examples=lambda: train_examples) with pytest.raises(TypeError): nlp.initialize(get_examples=lambda: None) with pytest.raises(TypeError): nlp.initialize(get_examples=train_examples) def test_overfitting_IO(): # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly nlp = English() train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) # add some cases where SENT_START == -1 train_examples[0].reference[10].is_sent_start = False train_examples[1].reference[1].is_sent_start = False train_examples[1].reference[11].is_sent_start = False nlp.add_pipe("senter") optimizer = nlp.initialize() for i in range(200): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["senter"] < 0.001 # test the trained model test_text = TRAIN_DATA[0][0] doc = nlp(test_text) gold_sent_starts = [0] * 14 gold_sent_starts[0] = 1 gold_sent_starts[5] = 1 gold_sent_starts[9] = 1 assert [int(t.is_sent_start) for t in doc] == gold_sent_starts # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts assert nlp.get_pipe("senter")._added_strings == nlp2.get_pipe("senter")._added_strings