from typing import Optional, Dict, Any, Union, List from pathlib import Path from wasabi import msg, table from thinc.api import Config from thinc.config import VARIABLE_RE, ConfigValidationError import typer from ._util import Arg, Opt, show_validation_error, parse_config_overrides from ._util import import_code, debug_cli from .. import util @debug_cli.command( "config", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, ) def debug_config_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments config_path: Path = Arg(..., help="Path to config file", exists=True), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), show_funcs: bool = Opt(False, "--show-functions", "-F", help="Show an overview of all registered functions used in the config and where they come from (modules, files etc.)"), show_vars: bool = Opt(False, "--show-variables", "-V", help="Show an overview of all variables referenced in the config and their values. This will also reflect variables overwritten on the CLI.") # fmt: on ): """Debug a config.cfg file and show validation errors. The command will create all objects in the tree and validate them. Note that some config validation errors are blocking and will prevent the rest of the config from being resolved. This means that you may not see all validation errors at once and some issues are only shown once previous errors have been fixed. Similar as with the 'train' command, you can override settings from the config as command line options. For instance, --training.batch_size 128 overrides the value of "batch_size" in the block "[training]". DOCS: https://nightly.spacy.io/api/cli#debug-config """ overrides = parse_config_overrides(ctx.args) import_code(code_path) debug_config( config_path, overrides=overrides, show_funcs=show_funcs, show_vars=show_vars ) def debug_config( config_path: Path, *, overrides: Dict[str, Any] = {}, show_funcs: bool = False, show_vars: bool = False, ): msg.divider("Config validation") with show_validation_error(config_path): config = util.load_config(config_path, overrides=overrides) nlp, resolved = util.load_model_from_config(config) # Use the resolved config here in case user has one function returning # a dict of corpora etc. check_section_refs(resolved, ["training.dev_corpus", "training.train_corpus"]) msg.good("Config is valid") if show_vars: variables = get_variables(config) msg.divider(f"Variables ({len(variables)})") head = ("Variable", "Value") msg.table(variables, header=head, divider=True, widths=(41, 34), spacing=2) if show_funcs: funcs = get_registered_funcs(config) msg.divider(f"Registered functions ({len(funcs)})") for func in funcs: func_data = { "Registry": f"@{func['registry']}", "Name": func["name"], "Module": func["module"], "File": f"{func['file']} (line {func['line_no']})", } msg.info(f"[{func['path']}]") print(table(func_data).strip()) def get_registered_funcs(config: Config) -> List[Dict[str, Optional[Union[str, int]]]]: result = [] for key, value in util.walk_dict(config): if not key[-1].startswith("@"): continue # We have a reference to a registered function reg_name = key[-1][1:] registry = getattr(util.registry, reg_name) path = ".".join(key[:-1]) info = registry.find(value) result.append({"name": value, "registry": reg_name, "path": path, **info}) return result def get_variables(config: Config) -> Dict[str, Any]: result = {} for variable in sorted(set(VARIABLE_RE.findall(config.to_str()))): path = variable[2:-1].replace(":", ".") value = util.dot_to_object(config, path) result[variable] = repr(value) return result def check_section_refs(config: Config, fields: List[str]) -> None: """Validate fields in the config that refer to other sections or values (e.g. in the corpora) and make sure that those references exist. """ errors = [] for field in fields: # If the field doesn't exist in the config, we ignore it try: value = util.dot_to_object(config, field) except KeyError: continue try: util.dot_to_object(config, value) except KeyError: msg = f"not a valid section reference: {value}" errors.append({"loc": field.split("."), "msg": msg}) if errors: raise ConfigValidationError(config, errors)