--- title: PhraseMatcher teaser: Match sequences of tokens, based on documents tag: class source: spacy/matcher/phrasematcher.pyx new: 2 --- The `PhraseMatcher` lets you efficiently match large terminology lists. While the [`Matcher`](/api/matcher) lets you match sequences based on lists of token descriptions, the `PhraseMatcher` accepts match patterns in the form of `Doc` objects. See the [usage guide](/usage/rule-based-matching#phrasematcher) for examples. ## PhraseMatcher.\_\_init\_\_ {#init tag="method"} Create the rule-based `PhraseMatcher`. Setting a different `attr` to match on will change the token attributes that will be compared to determine a match. By default, the incoming `Doc` is checked for sequences of tokens with the same `ORTH` value, i.e. the verbatim token text. Matching on the attribute `LOWER` will result in case-insensitive matching, since only the lowercase token texts are compared. In theory, it's also possible to match on sequences of the same part-of-speech tags or dependency labels. If `validate=True` is set, additional validation is performed when pattern are added. At the moment, it will check whether a `Doc` has attributes assigned that aren't necessary to produce the matches (for example, part-of-speech tags if the `PhraseMatcher` matches on the token text). Since this can often lead to significantly worse performance when creating the pattern, a `UserWarning` will be shown. > #### Example > > ```python > from spacy.matcher import PhraseMatcher > matcher = PhraseMatcher(nlp.vocab) > ``` | Name | Description | | ---------- | ------------------------------------------------------------------------------------------------------ | | `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ | | `attr` | The token attribute to match on. Defaults to `ORTH`, i.e. the verbatim token text. ~~Union[int, str]~~ | | `validate` | Validate patterns added to the matcher. ~~bool~~ | ## PhraseMatcher.\_\_call\_\_ {#call tag="method"} Find all token sequences matching the supplied patterns on the `Doc` or `Span`. > #### Example > > ```python > from spacy.matcher import PhraseMatcher > > matcher = PhraseMatcher(nlp.vocab) > matcher.add("OBAMA", [nlp("Barack Obama")]) > doc = nlp("Barack Obama lifts America one last time in emotional farewell") > matches = matcher(doc) > ``` | Name | Description | | ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ | | _keyword-only_ | | | `as_spans` 3 | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ | | **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ | Because spaCy stores all strings as integers, the `match_id` you get back will be an integer, too – but you can always get the string representation by looking it up in the vocabulary's `StringStore`, i.e. `nlp.vocab.strings`: ```python match_id_string = nlp.vocab.strings[match_id] ``` ## PhraseMatcher.\_\_len\_\_ {#len tag="method"} Get the number of rules added to the matcher. Note that this only returns the number of rules (identical with the number of IDs), not the number of individual patterns. > #### Example > > ```python > matcher = PhraseMatcher(nlp.vocab) > assert len(matcher) == 0 > matcher.add("OBAMA", [nlp("Barack Obama")]) > assert len(matcher) == 1 > ``` | Name | Description | | ----------- | ---------------------------- | | **RETURNS** | The number of rules. ~~int~~ | ## PhraseMatcher.\_\_contains\_\_ {#contains tag="method"} Check whether the matcher contains rules for a match ID. > #### Example > > ```python > matcher = PhraseMatcher(nlp.vocab) > assert "OBAMA" not in matcher > matcher.add("OBAMA", [nlp("Barack Obama")]) > assert "OBAMA" in matcher > ``` | Name | Description | | ----------- | -------------------------------------------------------------- | | `key` | The match ID. ~~str~~ | | **RETURNS** | Whether the matcher contains rules for this match ID. ~~bool~~ | ## PhraseMatcher.add {#add tag="method"} Add a rule to the matcher, consisting of an ID key, one or more patterns, and a optional callback function to act on the matches. The callback function will receive the arguments `matcher`, `doc`, `i` and `matches`. If a pattern already exists for the given ID, the patterns will be extended. An `on_match` callback will be overwritten. > #### Example > > ```python > def on_match(matcher, doc, id, matches): > print('Matched!', matches) > > matcher = PhraseMatcher(nlp.vocab) > matcher.add("OBAMA", [nlp("Barack Obama")], on_match=on_match) > matcher.add("HEALTH", [nlp("health care reform"), nlp("healthcare reform")], on_match=on_match) > doc = nlp("Barack Obama urges Congress to find courage to defend his healthcare reforms") > matches = matcher(doc) > ``` | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | | `key` | An ID for the thing you're matching. ~~str~~ | | `docs` | `Doc` objects of the phrases to match. ~~List[Doc]~~ | | _keyword-only_ | | | `on_match` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. ~~Optional[Callable[[Matcher, Doc, int, List[tuple], Any]]~~ | ## PhraseMatcher.remove {#remove tag="method" new="2.2"} Remove a rule from the matcher by match ID. A `KeyError` is raised if the key does not exist. > #### Example > > ```python > matcher = PhraseMatcher(nlp.vocab) > matcher.add("OBAMA", [nlp("Barack Obama")]) > assert "OBAMA" in matcher > matcher.remove("OBAMA") > assert "OBAMA" not in matcher > ``` | Name | Description | | ----- | --------------------------------- | | `key` | The ID of the match rule. ~~str~~ |