# coding: utf-8 from __future__ import unicode_literals from ..util import get_doc from ...attrs import ORTH, LENGTH import pytest @pytest.fixture def doc(en_tokenizer): text = "This is a sentence. This is another sentence. And a third." heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1] deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det', 'attr', 'punct', 'ROOT', 'det', 'npadvmod', 'punct'] tokens = en_tokenizer(text) return get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps) def test_spans_sent_spans(doc): sents = list(doc.sents) assert sents[0].start == 0 assert sents[0].end == 5 assert len(sents) == 3 assert sum(len(sent) for sent in sents) == len(doc) def test_spans_root(doc): span = doc[2:4] assert len(span) == 2 assert span.text == 'a sentence' assert span.root.text == 'sentence' assert span.root.head.text == 'is' def test_spans_string_fn(doc): span = doc[0:4] assert len(span) == 4 assert span.text == 'This is a sentence' assert span.upper_ == 'THIS IS A SENTENCE' assert span.lower_ == 'this is a sentence' def test_spans_root2(en_tokenizer): text = "through North and South Carolina" heads = [0, 3, -1, -2, -4] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads) assert doc[-2:].root.text == 'Carolina' def test_spans_span_sent(doc): """Test span.sent property""" assert len(list(doc.sents)) assert doc[:2].sent.root.text == 'is' assert doc[:2].sent.text == 'This is a sentence .' assert doc[6:7].sent.root.left_edge.text == 'This' def test_spans_lca_matrix(en_tokenizer): """Test span's lca matrix generation""" tokens = en_tokenizer('the lazy dog slept') doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0]) lca = doc[:2].get_lca_matrix() assert(lca[0, 0] == 0) assert(lca[0, 1] == -1) assert(lca[1, 0] == -1) assert(lca[1, 1] == 1) def test_spans_default_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = get_doc(tokens.vocab, [t.text for t in tokens]) assert doc[:2].sentiment == 3.0 / 2 assert doc[-2:].sentiment == -2. / 2 assert doc[:-1].sentiment == (3.+-2) / 3. def test_spans_override_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = get_doc(tokens.vocab, [t.text for t in tokens]) doc.user_span_hooks['sentiment'] = lambda span: 10.0 assert doc[:2].sentiment == 10.0 assert doc[-2:].sentiment == 10.0 assert doc[:-1].sentiment == 10.0 def test_spans_are_hashable(en_tokenizer): """Test spans can be hashed.""" text = "good stuff bad stuff" tokens = en_tokenizer(text) span1 = tokens[:2] span2 = tokens[2:4] assert hash(span1) != hash(span2) span3 = tokens[0:2] assert hash(span3) == hash(span1) def test_spans_by_character(doc): span1 = doc[1:-2] span2 = doc.char_span(span1.start_char, span1.end_char, label='GPE') assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == 'GPE' def test_span_to_array(doc): span = doc[1:-2] arr = span.to_array([ORTH, LENGTH]) assert arr.shape == (len(span), 2) assert arr[0, 0] == span[0].orth assert arr[0, 1] == len(span[0]) @pytest.mark.xfail def test_span_as_doc(doc): span = doc[4:10] span_doc = span.as_doc() assert span.text == span_doc.text