import pytest import numpy from numpy.testing import assert_array_equal from spacy.attrs import ORTH, LENGTH from spacy.lang.en import English from spacy.tokens import Doc, Span, Token from spacy.vocab import Vocab from spacy.util import filter_spans from thinc.api import get_current_ops from ..util import add_vecs_to_vocab from .test_underscore import clean_underscore # noqa: F401 @pytest.fixture def doc(en_tokenizer): # fmt: off text = "This is a sentence. This is another sentence. And a third." heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12] deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det", "attr", "punct", "ROOT", "det", "npadvmod", "punct"] ents = ["O", "O", "B-ENT", "I-ENT", "I-ENT", "I-ENT", "I-ENT", "O", "O", "O", "O", "O", "O", "O"] # fmt: on tokens = en_tokenizer(text) lemmas = [t.text for t in tokens] # this is not correct, just a placeholder spaces = [bool(t.whitespace_) for t in tokens] return Doc( tokens.vocab, words=[t.text for t in tokens], spaces=spaces, heads=heads, deps=deps, ents=ents, lemmas=lemmas, ) @pytest.fixture def doc_not_parsed(en_tokenizer): text = "This is a sentence. This is another sentence. And a third." tokens = en_tokenizer(text) doc = Doc(tokens.vocab, words=[t.text for t in tokens]) return doc @pytest.mark.issue(1537) def test_issue1537(): """Test that Span.as_doc() doesn't segfault.""" string = "The sky is blue . The man is pink . The dog is purple ." doc = Doc(Vocab(), words=string.split()) doc[0].sent_start = True for word in doc[1:]: if word.nbor(-1).text == ".": word.sent_start = True else: word.sent_start = False sents = list(doc.sents) sent0 = sents[0].as_doc() sent1 = sents[1].as_doc() assert isinstance(sent0, Doc) assert isinstance(sent1, Doc) @pytest.mark.issue(1612) def test_issue1612(en_tokenizer): """Test that span.orth_ is identical to span.text""" doc = en_tokenizer("The black cat purrs.") span = doc[1:3] assert span.orth_ == span.text @pytest.mark.issue(3199) def test_issue3199(): """Test that Span.noun_chunks works correctly if no noun chunks iterator is available. To make this test future-proof, we're constructing a Doc with a new Vocab here and a parse tree to make sure the noun chunks run. """ words = ["This", "is", "a", "sentence"] doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words)) with pytest.raises(NotImplementedError): list(doc[0:3].noun_chunks) @pytest.mark.issue(5152) def test_issue5152(): # Test that the comparison between a Span and a Token, goes well # There was a bug when the number of tokens in the span equaled the number of characters in the token (!) nlp = English() text = nlp("Talk about being boring!") text_var = nlp("Talk of being boring!") y = nlp("Let") span = text[0:3] # Talk about being span_2 = text[0:3] # Talk about being span_3 = text_var[0:3] # Talk of being token = y[0] # Let with pytest.warns(UserWarning): assert span.similarity(token) == 0.0 assert span.similarity(span_2) == 1.0 with pytest.warns(UserWarning): assert span_2.similarity(span_3) < 1.0 @pytest.mark.issue(6755) def test_issue6755(en_tokenizer): doc = en_tokenizer("This is a magnificent sentence.") span = doc[:0] assert span.text_with_ws == "" assert span.text == "" @pytest.mark.parametrize( "sentence, start_idx,end_idx,label", [("Welcome to Mumbai, my friend", 11, 17, "GPE")], ) @pytest.mark.issue(6815) def test_issue6815_1(sentence, start_idx, end_idx, label): nlp = English() doc = nlp(sentence) span = doc[:].char_span(start_idx, end_idx, label=label) assert span.label_ == label @pytest.mark.parametrize( "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)] ) @pytest.mark.issue(6815) def test_issue6815_2(sentence, start_idx, end_idx, kb_id): nlp = English() doc = nlp(sentence) span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id) assert span.kb_id == kb_id @pytest.mark.parametrize( "sentence, start_idx,end_idx,vector", [("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))], ) @pytest.mark.issue(6815) def test_issue6815_3(sentence, start_idx, end_idx, vector): nlp = English() doc = nlp(sentence) span = doc[:].char_span(start_idx, end_idx, vector=vector) assert (span.vector == vector).all() @pytest.mark.parametrize( "i_sent,i,j,text", [ (0, 0, len("This is a"), "This is a"), (1, 0, len("This is another"), "This is another"), (2, len("And "), len("And ") + len("a third"), "a third"), (0, 1, 2, None), ], ) def test_char_span(doc, i_sent, i, j, text): sents = list(doc.sents) span = sents[i_sent].char_span(i, j) if not text: assert not span else: assert span.text == text def test_spans_sent_spans(doc): sents = list(doc.sents) assert sents[0].start == 0 assert sents[0].end == 5 assert len(sents) == 3 assert sum(len(sent) for sent in sents) == len(doc) def test_spans_root(doc): span = doc[2:4] assert len(span) == 2 assert span.text == "a sentence" assert span.root.text == "sentence" assert span.root.head.text == "is" def test_spans_string_fn(doc): span = doc[0:4] assert len(span) == 4 assert span.text == "This is a sentence" def test_spans_root2(en_tokenizer): text = "through North and South Carolina" heads = [0, 4, 1, 1, 0] deps = ["dep"] * len(heads) tokens = en_tokenizer(text) doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) assert doc[-2:].root.text == "Carolina" def test_spans_span_sent(doc, doc_not_parsed): """Test span.sent property""" assert len(list(doc.sents)) assert doc[:2].sent.root.text == "is" assert doc[:2].sent.text == "This is a sentence." assert doc[6:7].sent.root.left_edge.text == "This" assert doc[0 : len(doc)].sent == list(doc.sents)[0] assert list(doc[0 : len(doc)].sents) == list(doc.sents) with pytest.raises(ValueError): doc_not_parsed[:2].sent # test on manual sbd doc_not_parsed[0].is_sent_start = True doc_not_parsed[5].is_sent_start = True assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5] assert doc_not_parsed[10:14].sent == doc_not_parsed[5:] @pytest.mark.parametrize( "start,end,expected_sentence", [ (0, 14, "This is"), # Entire doc (1, 4, "This is"), # Overlapping with 2 sentences (0, 2, "This is"), # Beginning of the Doc. Full sentence (0, 1, "This is"), # Beginning of the Doc. Part of a sentence (10, 14, "And a"), # End of the Doc. Overlapping with 2 senteces (12, 14, "third."), # End of the Doc. Full sentence (1, 1, "This is"), # Empty Span ], ) def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence): # Doc-level sents hook def user_hook(doc): return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)] doc.user_hooks["sents"] = user_hook # Make sure doc-level sents hook works assert doc[start:end].sent.text == expected_sentence # Span-level sent hook doc.user_span_hooks["sent"] = lambda x: x # Now, span=level sent hook overrides the doc-level sents hook assert doc[start:end].sent == doc[start:end] def test_spans_lca_matrix(en_tokenizer): """Test span's lca matrix generation""" tokens = en_tokenizer("the lazy dog slept") doc = Doc( tokens.vocab, words=[t.text for t in tokens], heads=[2, 2, 3, 3], deps=["dep"] * 4, ) lca = doc[:2].get_lca_matrix() assert lca.shape == (2, 2) assert lca[0, 0] == 0 # the & the -> the assert lca[0, 1] == -1 # the & lazy -> dog (out of span) assert lca[1, 0] == -1 # lazy & the -> dog (out of span) assert lca[1, 1] == 1 # lazy & lazy -> lazy lca = doc[1:].get_lca_matrix() assert lca.shape == (3, 3) assert lca[0, 0] == 0 # lazy & lazy -> lazy assert lca[0, 1] == 1 # lazy & dog -> dog assert lca[0, 2] == 2 # lazy & slept -> slept lca = doc[2:].get_lca_matrix() assert lca.shape == (2, 2) assert lca[0, 0] == 0 # dog & dog -> dog assert lca[0, 1] == 1 # dog & slept -> slept assert lca[1, 0] == 1 # slept & dog -> slept assert lca[1, 1] == 1 # slept & slept -> slept # example from Span API docs tokens = en_tokenizer("I like New York in Autumn") doc = Doc( tokens.vocab, words=[t.text for t in tokens], heads=[1, 1, 3, 1, 3, 4], deps=["dep"] * len(tokens), ) lca = doc[1:4].get_lca_matrix() assert_array_equal(lca, numpy.asarray([[0, 0, 0], [0, 1, 2], [0, 2, 2]])) def test_span_similarity_match(): doc = Doc(Vocab(), words=["a", "b", "a", "b"]) span1 = doc[:2] span2 = doc[2:] with pytest.warns(UserWarning): assert span1.similarity(span2) == 1.0 assert span1.similarity(doc) == 0.0 assert span1[:1].similarity(doc.vocab["a"]) == 1.0 def test_spans_default_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = Doc(tokens.vocab, words=[t.text for t in tokens]) assert doc[:2].sentiment == 3.0 / 2 assert doc[-2:].sentiment == -2.0 / 2 assert doc[:-1].sentiment == (3.0 + -2) / 3.0 def test_spans_override_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = Doc(tokens.vocab, words=[t.text for t in tokens]) doc.user_span_hooks["sentiment"] = lambda span: 10.0 assert doc[:2].sentiment == 10.0 assert doc[-2:].sentiment == 10.0 assert doc[:-1].sentiment == 10.0 def test_spans_are_hashable(en_tokenizer): """Test spans can be hashed.""" text = "good stuff bad stuff" tokens = en_tokenizer(text) span1 = tokens[:2] span2 = tokens[2:4] assert hash(span1) != hash(span2) span3 = tokens[0:2] assert hash(span3) == hash(span1) def test_spans_by_character(doc): span1 = doc[1:-2] # default and specified alignment mode "strict" span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE") assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == "GPE" span2 = doc.char_span( span1.start_char, span1.end_char, label="GPE", alignment_mode="strict" ) assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == "GPE" # alignment mode "contract" span2 = doc.char_span( span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract" ) assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == "GPE" # alignment mode "expand" span2 = doc.char_span( span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand" ) assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == "GPE" # unsupported alignment mode with pytest.raises(ValueError): span2 = doc.char_span( span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk" ) def test_span_to_array(doc): span = doc[1:-2] arr = span.to_array([ORTH, LENGTH]) assert arr.shape == (len(span), 2) assert arr[0, 0] == span[0].orth assert arr[0, 1] == len(span[0]) def test_span_as_doc(doc): span = doc[4:10] span_doc = span.as_doc() assert span.text == span_doc.text.strip() assert isinstance(span_doc, doc.__class__) assert span_doc is not doc assert span_doc[0].idx == 0 # partial initial entity is removed assert len(span_doc.ents) == 0 # full entity is preserved span_doc = doc[2:10].as_doc() assert len(span_doc.ents) == 1 # partial final entity is removed span_doc = doc[0:5].as_doc() assert len(span_doc.ents) == 0 @pytest.mark.usefixtures("clean_underscore") def test_span_as_doc_user_data(doc): """Test that the user_data can be preserved (but not by default).""" my_key = "my_info" my_value = 342 doc.user_data[my_key] = my_value Token.set_extension("is_x", default=False) doc[7]._.is_x = True span = doc[4:10] span_doc_with = span.as_doc(copy_user_data=True) span_doc_without = span.as_doc() assert doc.user_data.get(my_key, None) is my_value assert span_doc_with.user_data.get(my_key, None) is my_value assert span_doc_without.user_data.get(my_key, None) is None for i in range(len(span_doc_with)): if i != 3: assert span_doc_with[i]._.is_x is False else: assert span_doc_with[i]._.is_x is True assert not any([t._.is_x for t in span_doc_without]) def test_span_string_label_kb_id(doc): span = Span(doc, 0, 1, label="hello", kb_id="Q342") assert span.label_ == "hello" assert span.label == doc.vocab.strings["hello"] assert span.kb_id_ == "Q342" assert span.kb_id == doc.vocab.strings["Q342"] def test_span_attrs_writable(doc): span = Span(doc, 0, 1) span.label_ = "label" span.kb_id_ = "kb_id" def test_span_ents_property(doc): doc.ents = [ (doc.vocab.strings["PRODUCT"], 0, 1), (doc.vocab.strings["PRODUCT"], 7, 8), (doc.vocab.strings["PRODUCT"], 11, 14), ] assert len(list(doc.ents)) == 3 sentences = list(doc.sents) assert len(sentences) == 3 assert len(sentences[0].ents) == 1 # First sentence, also tests start of sentence assert sentences[0].ents[0].text == "This" assert sentences[0].ents[0].label_ == "PRODUCT" assert sentences[0].ents[0].start == 0 assert sentences[0].ents[0].end == 1 # Second sentence assert len(sentences[1].ents) == 1 assert sentences[1].ents[0].text == "another" assert sentences[1].ents[0].label_ == "PRODUCT" assert sentences[1].ents[0].start == 7 assert sentences[1].ents[0].end == 8 # Third sentence ents, Also tests end of sentence assert sentences[2].ents[0].text == "a third." assert sentences[2].ents[0].label_ == "PRODUCT" assert sentences[2].ents[0].start == 11 assert sentences[2].ents[0].end == 14 def test_filter_spans(doc): # Test filtering duplicates spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]] filtered = filter_spans(spans) assert len(filtered) == 3 assert filtered[0].start == 1 and filtered[0].end == 4 assert filtered[1].start == 6 and filtered[1].end == 8 assert filtered[2].start == 10 and filtered[2].end == 14 # Test filtering overlaps with longest preference spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]] filtered = filter_spans(spans) assert len(filtered) == 2 assert len(filtered[0]) == 3 assert len(filtered[1]) == 5 assert filtered[0].start == 1 and filtered[0].end == 4 assert filtered[1].start == 5 and filtered[1].end == 10 # Test filtering overlaps with earlier preference for identical length spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]] filtered = filter_spans(spans) assert len(filtered) == 2 assert len(filtered[0]) == 3 assert len(filtered[1]) == 5 assert filtered[0].start == 1 and filtered[0].end == 4 assert filtered[1].start == 5 and filtered[1].end == 10 def test_span_eq_hash(doc, doc_not_parsed): assert doc[0:2] == doc[0:2] assert doc[0:2] != doc[1:3] assert doc[0:2] != doc_not_parsed[0:2] assert hash(doc[0:2]) == hash(doc[0:2]) assert hash(doc[0:2]) != hash(doc[1:3]) assert hash(doc[0:2]) != hash(doc_not_parsed[0:2]) # check that an out-of-bounds is not equivalent to the span of the full doc assert doc[0 : len(doc)] != doc[len(doc) : len(doc) + 1] def test_span_boundaries(doc): start = 1 end = 5 span = doc[start:end] for i in range(start, end): assert span[i - start] == doc[i] with pytest.raises(IndexError): span[-5] with pytest.raises(IndexError): span[5] empty_span_0 = doc[0:0] assert empty_span_0.text == "" assert empty_span_0.start == 0 assert empty_span_0.end == 0 assert empty_span_0.start_char == 0 assert empty_span_0.end_char == 0 empty_span_1 = doc[1:1] assert empty_span_1.text == "" assert empty_span_1.start == 1 assert empty_span_1.end == 1 assert empty_span_1.start_char == empty_span_1.end_char oob_span_start = doc[-len(doc) - 1 : -len(doc) - 10] assert oob_span_start.text == "" assert oob_span_start.start == 0 assert oob_span_start.end == 0 assert oob_span_start.start_char == 0 assert oob_span_start.end_char == 0 oob_span_end = doc[len(doc) + 1 : len(doc) + 10] assert oob_span_end.text == "" assert oob_span_end.start == len(doc) assert oob_span_end.end == len(doc) assert oob_span_end.start_char == len(doc.text) assert oob_span_end.end_char == len(doc.text) def test_span_lemma(doc): # span lemmas should have the same number of spaces as the span sp = doc[1:5] assert len(sp.text.split(" ")) == len(sp.lemma_.split(" ")) def test_sent(en_tokenizer): doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.") span = doc[1:3] assert not span.doc.has_annotation("SENT_START") with pytest.raises(ValueError): span.sent def test_span_with_vectors(doc): ops = get_current_ops() prev_vectors = doc.vocab.vectors vectors = [ ("apple", ops.asarray([1, 2, 3])), ("orange", ops.asarray([-1, -2, -3])), ("And", ops.asarray([-1, -1, -1])), ("juice", ops.asarray([5, 5, 10])), ("pie", ops.asarray([7, 6.3, 8.9])), ] add_vecs_to_vocab(doc.vocab, vectors) # 0-length span assert_array_equal(ops.to_numpy(doc[0:0].vector), numpy.zeros((3,))) # longer span with no vector assert_array_equal(ops.to_numpy(doc[0:4].vector), numpy.zeros((3,))) # single-token span with vector assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1]) doc.vocab.vectors = prev_vectors @pytest.mark.parametrize( "start,end,expected_sentences,expected_sentences_with_hook", [ (0, 14, 3, 7), # Entire doc (3, 6, 2, 2), # Overlapping with 2 sentences (0, 4, 1, 2), # Beginning of the Doc. Full sentence (0, 3, 1, 2), # Beginning of the Doc. Part of a sentence (9, 14, 2, 3), # End of the Doc. Overlapping with 2 senteces (10, 14, 1, 2), # End of the Doc. Full sentence (11, 14, 1, 2), # End of the Doc. Partial sentence (0, 0, 1, 1), # Empty Span ], ) def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook): assert len(list(doc[start:end].sents)) == expected_sentences def user_hook(doc): return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)] doc.user_hooks["sents"] = user_hook assert len(list(doc[start:end].sents)) == expected_sentences_with_hook doc.user_span_hooks["sents"] = lambda x: [x] assert list(doc[start:end].sents)[0] == doc[start:end] assert len(list(doc[start:end].sents)) == 1 def test_span_sents_not_parsed(doc_not_parsed): with pytest.raises(ValueError): list(Span(doc_not_parsed, 0, 3).sents)