//- 💫 DOCS > API > ANNOTATION > TRAINING

+h(3, "json-input") JSON input format for training

p
    |  spaCy takes training data in JSON format. The built-in
    |  #[+api("cli#convert") #[code convert]] command helps you convert the
    |  #[code .conllu] format used by the
    |  #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora]
    |  to spaCy's training format.

+aside("Annotating entities")
    |  Named entities are provided in the #[+a("/api/annotation#biluo") BILUO]
    |  notation. Tokens outside an entity are set to #[code "O"] and tokens
    |  that are part of an entity are set to the entity label, prefixed by the
    |  BILUO marker. For example #[code "B-ORG"] describes the first token of
    |  a multi-token #[code ORG] entity and #[code "U-PERSON"] a single
    |  token representing a #[code PERSON] entity. The
    |  #[+api("goldparse#biluo_tags_from_offsets") #[code biluo_tags_from_offsets]]
    |  function can help you convert entity offsets to the right format.

+code("Example structure").
    [{
        "id": int,                      # ID of the document within the corpus
        "paragraphs": [{                # list of paragraphs in the corpus
            "raw": string,              # raw text of the paragraph
            "sentences": [{             # list of sentences in the paragraph
                "tokens": [{            # list of tokens in the sentence
                    "id": int,          # index of the token in the document
                    "dep": string,      # dependency label
                    "head": int,        # offset of token head relative to token index
                    "tag": string,      # part-of-speech tag
                    "orth": string,     # verbatim text of the token
                    "ner": string       # BILUO label, e.g. "O" or "B-ORG"
                }],
                "brackets": [{          # phrase structure (NOT USED by current models)
                    "first": int,       # index of first token
                    "last": int,        # index of last token
                    "label": string     # phrase label
                }]
            }]
        }]
    }]

p
    |  Here's an example of dependencies, part-of-speech tags and names
    |  entities, taken from the English Wall Street Journal portion of the Penn
    |  Treebank:

+github("spacy", "examples/training/training-data.json", false, false, "json")

+h(3, "vocab-jsonl") Lexical data for vocabulary
    +tag-new(2)

p
    |  The populate a model's vocabulary, you can use the
    |  #[+api("cli#vocab") #[code spacy vocab]] command and load in a
    |  #[+a("https://jsonlines.readthedocs.io/en/latest/") newline-delimited JSON]
    |  (JSONL) file containing one lexical entry per line. The first line
    |  defines the language and vocabulary settings. All other lines are
    |  expected to be JSON objects describing an individual lexeme. The lexical
    |  attributes will be then set as attributes on spaCy's
    |  #[+api("lexeme#attributes") #[code Lexeme]] object. The #[code vocab]
    |  command outputs a ready-to-use spaCy model with a #[code Vocab]
    |  containing the lexical data.

+code("First line").
    {"lang": "en", "settings": {"oov_prob": -20.502029418945312}}

+code("Entry structure").
    {
        "orth": string,
        "id": int,
        "lower": string,
        "norm": string,
        "shape": string
        "prefix": string,
        "suffix": string,
        "length": int,
        "cluster": string,
        "prob": float,
        "is_alpha": bool,
        "is_ascii": bool,
        "is_digit": bool,
        "is_lower": bool,
        "is_punct": bool,
        "is_space": bool,
        "is_title": bool,
        "is_upper": bool,
        "like_url": bool,
        "like_num": bool,
        "like_email": bool,
        "is_stop": bool,
        "is_oov": bool,
        "is_quote": bool,
        "is_left_punct": bool,
        "is_right_punct": bool
    }

p
    |  Here's an example of the 20 most frequent lexemes in the English
    |  training data:

+github("spacy", "examples/training/vocab-data.jsonl", false, false, "json")