--- title: EntityRuler tag: class source: spacy/pipeline/entityruler.py new: 2.1 --- The EntityRuler lets you add spans to the [`Doc.ents`](/api/doc#ents) using token-based rules or exact phrase matches. It can be combined with the statistical [`EntityRecognizer`](/api/entityrecognizer) to boost accuracy, or used on its own to implement a purely rule-based entity recognition system. After initialization, the component is typically added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe). ## EntityRuler.\_\_init\_\_ {#init tag="method"} Initialize the entity ruler. If patterns are supplied here, they need to be a list of dictionaries with a `"label"` and `"pattern"` key. A pattern can either be a token pattern (list) or a phrase pattern (string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`. > #### Example > > ```python > # Construction via create_pipe > ruler = nlp.create_pipe("entityruler") > > # Construction from class > from spacy.pipeline import EntityRuler > ruler = EntityRuler(nlp, overwrite_ents=True) > ``` | Name | Type | Description | | --------------------- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- | | `nlp` | `Language` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. | | `patterns` | iterable | Optional patterns to load in. | | `phrase_matcher_attr` | int / unicode | Optional attr to pass to the internal [`PhraseMatcher`](/api/phtasematcher). defaults to `None` | | `overwrite_ents` | bool | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. | | `**cfg` | - | Other config parameters. If pipeline component is loaded as part of a model pipeline, this will include all keyword arguments passed to `spacy.load`. | | **RETURNS** | `EntityRuler` | The newly constructed object. | ## EntityRuler.\_\len\_\_ {#len tag="method"} The number of all patterns added to the entity ruler. > #### Example > > ```python > ruler = EntityRuler(nlp) > assert len(ruler) == 0 > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}]) > assert len(ruler) == 1 > ``` | Name | Type | Description | | ----------- | ---- | ----------------------- | | **RETURNS** | int | The number of patterns. | ## EntityRuler.\_\_contains\_\_ {#contains tag="method"} Whether a label is present in the patterns. > #### Example > > ```python > ruler = EntityRuler(nlp) > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}]) > assert "ORG" in ruler > assert not "PERSON" in ruler > ``` | Name | Type | Description | | ----------- | ------- | -------------------------------------------- | | `label` | unicode | The label to check. | | **RETURNS** | bool | Whether the entity ruler contains the label. | ## EntityRuler.\_\_call\_\_ {#call tag="method"} Find matches in the `Doc` and add them to the `doc.ents`. Typically, this happens automatically after the component has been added to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe). If the entity ruler was initialized with `overwrite_ents=True`, existing entities will be replaced if they overlap with the matches. > #### Example > > ```python > ruler = EntityRuler(nlp) > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}]) > nlp.add_pipe(ruler) > > doc = nlp("A text about Apple.") > ents = [(ent.text, ent.label_) for ent in doc.ents] > assert ents == [("Apple", "ORG")] > ``` | Name | Type | Description | | ----------- | ----- | ------------------------------------------------------------ | | `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. | | **RETURNS** | `Doc` | The modified `Doc` with added entities, if available. | ## EntityRuler.add_patterns {#add_patterns tag="method"} Add patterns to the entity ruler. A pattern can either be a token pattern (list of dicts) or a phrase pattern (string). For more details, see the usage guide on [rule-based matching](/usage/rule-based-matching). > #### Example > > ```python > patterns = [ > {"label": "ORG", "pattern": "Apple"}, > {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]} > ] > ruler = EntityRuler(nlp) > ruler.add_patterns(patterns) > ``` | Name | Type | Description | | ---------- | ---- | -------------------- | | `patterns` | list | The patterns to add. | ## EntityRuler.to_disk {#to_disk tag="method"} Save the entity ruler patterns to a directory. The patterns will be saved as newline-delimited JSON (JSONL). If a file with the suffix `.jsonl` is provided, only the patterns are saved as JSONL. If a directory name is provided, a `patterns.jsonl` and `cfg` file with the component configuration is exported. > #### Example > > ```python > ruler = EntityRuler(nlp) > ruler.to_disk("/path/to/patterns.jsonl") # saves patterns only > ruler.to_disk("/path/to/entity_ruler") # saves patterns and config > ``` | Name | Type | Description | | ------ | ---------------- | ----------------------------------------------------------------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a JSONL file or directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. | ## EntityRuler.from_disk {#from_disk tag="method"} Load the entity ruler from a file. Expects either a file containing newline-delimited JSON (JSONL) with one entry per line, or a directory containing a `patterns.jsonl` file and a `cfg` file with the component configuration. > #### Example > > ```python > ruler = EntityRuler(nlp) > ruler.from_disk("/path/to/patterns.jsonl") # loads patterns only > ruler.from_disk("/path/to/entity_ruler") # loads patterns and config > ``` | Name | Type | Description | | ----------- | ---------------- | ---------------------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a JSONL file or directory. Paths may be either strings or `Path`-like objects. | | **RETURNS** | `EntityRuler` | The modified `EntityRuler` object. | ## EntityRuler.to_bytes {#to_bytes tag="method"} Serialize the entity ruler patterns to a bytestring. > #### Example > > ```python > ruler = EntityRuler(nlp) > ruler_bytes = ruler.to_bytes() > ``` | Name | Type | Description | | ----------- | ----- | ------------------------ | | **RETURNS** | bytes | The serialized patterns. | ## EntityRuler.from_bytes {#from_bytes tag="method"} Load the pipe from a bytestring. Modifies the object in place and returns it. > #### Example > > ```python > ruler_bytes = ruler.to_bytes() > ruler = EntityRuler(nlp) > ruler.from_bytes(ruler_bytes) > ``` | Name | Type | Description | | ---------------- | ------------- | ---------------------------------- | | `patterns_bytes` | bytes | The bytestring to load. | | **RETURNS** | `EntityRuler` | The modified `EntityRuler` object. | ## EntityRuler.labels {#labels tag="property"} All labels present in the match patterns. | Name | Type | Description | | ----------- | ----- | ------------------ | | **RETURNS** | tuple | The string labels. | ## EntityRuler.patterns {#patterns tag="property"} Get all patterns that were added to the entity ruler. | Name | Type | Description | | ----------- | ---- | -------------------------------------------------- | | **RETURNS** | list | The original patterns, one dictionary per pattern. | ## Attributes {#attributes} | Name | Type | Description | | ----------------- | ------------------------------------- | ---------------------------------------------------------------- | | `matcher` | [`Matcher`](/api/matcher) | The underlying matcher used to process token patterns. | | `phrase_matcher` | [`PhraseMatcher`](/api/phtasematcher) | The underlying phrase matcher, used to process phrase patterns. | | `token_patterns` | dict | The token patterns present in the entity ruler, keyed by label. | | `phrase_patterns` | dict | The phrase patterns present in the entity ruler, keyed by label. |