# coding: utf8 # cython: infer_types=True # cython: bounds_check=False # cython: profile=True from __future__ import unicode_literals from libc.string cimport memcpy, memset from libc.stdlib cimport malloc, free import numpy from cymem.cymem cimport Pool from thinc.neural.util import get_array_module from .doc cimport Doc, set_children_from_heads, token_by_start, token_by_end from .span cimport Span from .token cimport Token from ..lexeme cimport Lexeme, EMPTY_LEXEME from ..structs cimport LexemeC, TokenC from ..attrs cimport TAG from ..attrs import intify_attrs from ..util import SimpleFrozenDict from ..errors import Errors cdef class Retokenizer: """Helper class for doc.retokenize() context manager.""" cdef Doc doc cdef list merges cdef list splits cdef set tokens_to_merge def __init__(self, doc): self.doc = doc self.merges = [] self.splits = [] self.tokens_to_merge = set() def merge(self, Span span, attrs=SimpleFrozenDict()): """Mark a span for merging. The attrs will be applied to the resulting token. """ for token in span: if token.i in self.tokens_to_merge: raise ValueError(Errors.E102.format(token=repr(token))) self.tokens_to_merge.add(token.i) attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings) self.merges.append((span, attrs)) def split(self, Token token, orths, attrs=SimpleFrozenDict()): """Mark a Token for splitting, into the specified orths. The attrs will be applied to each subtoken. """ attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings) self.splits.append((token.start_char, orths, attrs)) def __enter__(self): self.merges = [] self.splits = [] return self def __exit__(self, *args): # Do the actual merging here if len(self.merges) > 1: _bulk_merge(self.doc, self.merges) elif len(self.merges) == 1: (span, attrs) = self.merges[0] start = span.start end = span.end _merge(self.doc, start, end, attrs) for start_char, orths, attrs in self.splits: raise NotImplementedError def _merge(Doc doc, int start, int end, attributes): """Retokenize the document, such that the span at `doc.text[start_idx : end_idx]` is merged into a single token. If `start_idx` and `end_idx `do not mark start and end token boundaries, the document remains unchanged. start_idx (int): Character index of the start of the slice to merge. end_idx (int): Character index after the end of the slice to merge. **attributes: Attributes to assign to the merged token. By default, attributes are inherited from the syntactic root of the span. RETURNS (Token): The newly merged token, or `None` if the start and end indices did not fall at token boundaries. """ cdef Span span = doc[start:end] cdef int start_char = span.start_char cdef int end_char = span.end_char # Resize the doc.tensor, if it's set. Let the last row for each token stand # for the merged region. To do this, we create a boolean array indicating # whether the row is to be deleted, then use numpy.delete if doc.tensor is not None and doc.tensor.size != 0: doc.tensor = _resize_tensor(doc.tensor, [(start, end)]) # Get LexemeC for newly merged token new_orth = ''.join([t.text_with_ws for t in span]) if span[-1].whitespace_: new_orth = new_orth[:-len(span[-1].whitespace_)] cdef const LexemeC* lex = doc.vocab.get(doc.mem, new_orth) # House the new merged token where it starts cdef TokenC* token = &doc.c[start] token.spacy = doc.c[end-1].spacy for attr_name, attr_value in attributes.items(): if attr_name == TAG: doc.vocab.morphology.assign_tag(token, attr_value) else: Token.set_struct_attr(token, attr_name, attr_value) # Make sure ent_iob remains consistent if doc.c[end].ent_iob == 1 and token.ent_iob in (0, 2): if token.ent_type == doc.c[end].ent_type: token.ent_iob = 3 else: # If they're not the same entity type, let them be two entities doc.c[end].ent_iob = 3 # Begin by setting all the head indices to absolute token positions # This is easier to work with for now than the offsets # Before thinking of something simpler, beware the case where a # dependency bridges over the entity. Here the alignment of the # tokens changes. span_root = span.root.i token.dep = span.root.dep # We update token.lex after keeping span root and dep, since # setting token.lex will change span.start and span.end properties # as it modifies the character offsets in the doc token.lex = lex for i in range(doc.length): doc.c[i].head += i # Set the head of the merged token, and its dep relation, from the Span token.head = doc.c[span_root].head # Adjust deps before shrinking tokens # Tokens which point into the merged token should now point to it # Subtract the offset from all tokens which point to >= end offset = (end - start) - 1 for i in range(doc.length): head_idx = doc.c[i].head if start <= head_idx < end: doc.c[i].head = start elif head_idx >= end: doc.c[i].head -= offset # Now compress the token array for i in range(end, doc.length): doc.c[i - offset] = doc.c[i] for i in range(doc.length - offset, doc.length): memset(&doc.c[i], 0, sizeof(TokenC)) doc.c[i].lex = &EMPTY_LEXEME doc.length -= offset for i in range(doc.length): # ...And, set heads back to a relative position doc.c[i].head -= i # Set the left/right children, left/right edges set_children_from_heads(doc.c, doc.length) # Clear the cached Python objects # Return the merged Python object return doc[start] def _bulk_merge(Doc doc, merges): """Retokenize the document, such that the spans described in 'merges' are merged into a single token. This method assumes that the merges are in the same order at which they appear in the doc, and that merges do not intersect each other in any way. merges: Tokens to merge, and corresponding attributes to assign to the merged token. By default, attributes are inherited from the syntactic root of the span. RETURNS (Token): The first newly merged token. """ cdef Span span cdef const LexemeC* lex cdef Pool mem = Pool() tokens = mem.alloc(len(merges), sizeof(TokenC)) spans = [] def _get_start(merge): return merge[0].start merges.sort(key=_get_start) for merge_index, (span, attributes) in enumerate(merges): start = span.start end = span.end spans.append(span) # House the new merged token where it starts token = &doc.c[start] tokens[merge_index] = token # Assign attributes for attr_name, attr_value in attributes.items(): if attr_name == TAG: doc.vocab.morphology.assign_tag(token, attr_value) else: Token.set_struct_attr(token, attr_name, attr_value) # Resize the doc.tensor, if it's set. Let the last row for each token stand # for the merged region. To do this, we create a boolean array indicating # whether the row is to be deleted, then use numpy.delete if doc.tensor is not None and doc.tensor.size != 0: doc.tensor = _resize_tensor(doc.tensor, [(m[1][0].start, m[1][0].end) for m in merges]) # Memorize span roots and sets dependencies of the newly merged # tokens to the dependencies of their roots. span_roots = [] for i, span in enumerate(spans): span_roots.append(span.root.i) tokens[i].dep = span.root.dep # We update token.lex after keeping span root and dep, since # setting token.lex will change span.start and span.end properties # as it modifies the character offsets in the doc for token_index in range(len(merges)): new_orth = ''.join([t.text_with_ws for t in spans[token_index]]) if spans[token_index][-1].whitespace_: new_orth = new_orth[:-len(spans[token_index][-1].whitespace_)] lex = doc.vocab.get(doc.mem, new_orth) tokens[token_index].lex = lex # We set trailing space here too tokens[token_index].spacy = doc.c[spans[token_index].end-1].spacy # Begin by setting all the head indices to absolute token positions # This is easier to work with for now than the offsets # Before thinking of something simpler, beware the case where a # dependency bridges over the entity. Here the alignment of the # tokens changes. for i in range(doc.length): doc.c[i].head += i # Set the head of the merged token from the Span for i in range(len(merges)): tokens[i].head = doc.c[span_roots[i]].head # Adjust deps before shrinking tokens # Tokens which point into the merged token should now point to it # Subtract the offset from all tokens which point to >= end offsets = [] current_span_index = 0 current_offset = 0 for i in range(doc.length): if current_span_index < len(spans) and i == spans[current_span_index].end: #last token was the last of the span current_offset += (spans[current_span_index].end - spans[current_span_index].start) -1 current_span_index += 1 if current_span_index < len(spans) and \ spans[current_span_index].start <= i < spans[current_span_index].end: offsets.append(spans[current_span_index].start - current_offset) else: offsets.append(i - current_offset) for i in range(doc.length): doc.c[i].head = offsets[doc.c[i].head] # Now compress the token array offset = 0 in_span = False span_index = 0 for i in range(doc.length): if in_span and i == spans[span_index].end: # First token after a span in_span = False span_index += 1 if span_index < len(spans) and i == spans[span_index].start: # First token in a span doc.c[i - offset] = doc.c[i] # move token to its place offset += (spans[span_index].end - spans[span_index].start) - 1 in_span = True if not in_span: doc.c[i - offset] = doc.c[i] # move token to its place for i in range(doc.length - offset, doc.length): memset(&doc.c[i], 0, sizeof(TokenC)) doc.c[i].lex = &EMPTY_LEXEME doc.length -= offset # ...And, set heads back to a relative position for i in range(doc.length): doc.c[i].head -= i # Set the left/right children, left/right edges set_children_from_heads(doc.c, doc.length) # Make sure ent_iob remains consistent for (span, _) in merges: if(span.end < len(offsets)): #if it's not the last span token_after_span_position = offsets[span.end] if doc.c[token_after_span_position].ent_iob == 1\ and doc.c[token_after_span_position - 1].ent_iob in (0, 2): if doc.c[token_after_span_position - 1].ent_type == doc.c[token_after_span_position].ent_type: doc.c[token_after_span_position - 1].ent_iob = 3 else: # If they're not the same entity type, let them be two entities doc.c[token_after_span_position].ent_iob = 3 # Return the merged Python object return doc[spans[0].start] def _resize_tensor(tensor, ranges): delete = [] for start, end in ranges: for i in range(start, end-1): delete.append(i) xp = get_array_module(tensor) return xp.delete(tensor, delete, axis=0)