# cython: profile=True, cdivision=True, infer_types=True from cymem.cymem cimport Pool, Address from libc.stdint cimport int32_t from collections import defaultdict, Counter from ...typedefs cimport hash_t, attr_t from ...strings cimport hash_string from ...structs cimport TokenC from ...tokens.doc cimport Doc, set_children_from_heads from ...training.example cimport Example from .stateclass cimport StateClass from ._state cimport StateC from ...errors import Errors cdef weight_t MIN_SCORE = -90000 cdef attr_t SUBTOK_LABEL = hash_string(u'subtok') DEF NON_MONOTONIC = True cdef enum: SHIFT REDUCE LEFT RIGHT BREAK N_MOVES MOVE_NAMES = [None] * N_MOVES MOVE_NAMES[SHIFT] = 'S' MOVE_NAMES[REDUCE] = 'D' MOVE_NAMES[LEFT] = 'L' MOVE_NAMES[RIGHT] = 'R' MOVE_NAMES[BREAK] = 'B' cdef enum: HEAD_IN_STACK = 0 HEAD_IN_BUFFER HEAD_UNKNOWN IS_SENT_START SENT_START_UNKNOWN cdef struct GoldParseStateC: char* state_bits int32_t* n_kids_in_buffer int32_t* n_kids_in_stack int32_t* heads attr_t* labels int32_t** kids int32_t* n_kids int32_t length int32_t stride weight_t push_cost weight_t pop_cost cdef GoldParseStateC create_gold_state(Pool mem, const StateC* state, heads, labels, sent_starts) except *: cdef GoldParseStateC gs gs.length = len(heads) gs.stride = 1 gs.labels = mem.alloc(gs.length, sizeof(gs.labels[0])) gs.heads = mem.alloc(gs.length, sizeof(gs.heads[0])) gs.n_kids = mem.alloc(gs.length, sizeof(gs.n_kids[0])) gs.state_bits = mem.alloc(gs.length, sizeof(gs.state_bits[0])) gs.n_kids_in_buffer = mem.alloc(gs.length, sizeof(gs.n_kids_in_buffer[0])) gs.n_kids_in_stack = mem.alloc(gs.length, sizeof(gs.n_kids_in_stack[0])) for i, is_sent_start in enumerate(sent_starts): if is_sent_start == True: gs.state_bits[i] = set_state_flag( gs.state_bits[i], IS_SENT_START, 1 ) gs.state_bits[i] = set_state_flag( gs.state_bits[i], SENT_START_UNKNOWN, 0 ) elif is_sent_start is None: gs.state_bits[i] = set_state_flag( gs.state_bits[i], SENT_START_UNKNOWN, 1 ) gs.state_bits[i] = set_state_flag( gs.state_bits[i], IS_SENT_START, 0 ) else: gs.state_bits[i] = set_state_flag( gs.state_bits[i], SENT_START_UNKNOWN, 0 ) gs.state_bits[i] = set_state_flag( gs.state_bits[i], IS_SENT_START, 0 ) for i, (head, label) in enumerate(zip(heads, labels)): if head is not None: gs.heads[i] = head gs.labels[i] = label if i != head: gs.n_kids[head] += 1 gs.state_bits[i] = set_state_flag( gs.state_bits[i], HEAD_UNKNOWN, 0 ) else: gs.state_bits[i] = set_state_flag( gs.state_bits[i], HEAD_UNKNOWN, 1 ) # Make an array of pointers, pointing into the gs_kids_flat array. gs.kids = mem.alloc(gs.length, sizeof(int32_t*)) for i in range(gs.length): if gs.n_kids[i] != 0: gs.kids[i] = mem.alloc(gs.n_kids[i], sizeof(int32_t)) # This is a temporary buffer js_addr = Address(gs.length, sizeof(int32_t)) js = js_addr.ptr for i in range(gs.length): if not is_head_unknown(&gs, i): head = gs.heads[i] if head != i: gs.kids[head][js[head]] = i js[head] += 1 gs.push_cost = push_cost(state, &gs) gs.pop_cost = pop_cost(state, &gs) return gs cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) nogil: for i in range(gs.length): gs.state_bits[i] = set_state_flag( gs.state_bits[i], HEAD_IN_BUFFER, 0 ) gs.state_bits[i] = set_state_flag( gs.state_bits[i], HEAD_IN_STACK, 0 ) gs.n_kids_in_stack[i] = 0 gs.n_kids_in_buffer[i] = 0 for i in range(s.stack_depth()): s_i = s.S(i) if not is_head_unknown(gs, s_i) and gs.heads[s_i] != s_i: gs.n_kids_in_stack[gs.heads[s_i]] += 1 for kid in gs.kids[s_i][:gs.n_kids[s_i]]: gs.state_bits[kid] = set_state_flag( gs.state_bits[kid], HEAD_IN_STACK, 1 ) for i in range(s.buffer_length()): b_i = s.B(i) if s.is_sent_start(b_i): break if not is_head_unknown(gs, b_i) and gs.heads[b_i] != b_i: gs.n_kids_in_buffer[gs.heads[b_i]] += 1 for kid in gs.kids[b_i][:gs.n_kids[b_i]]: gs.state_bits[kid] = set_state_flag( gs.state_bits[kid], HEAD_IN_BUFFER, 1 ) gs.push_cost = push_cost(s, gs) gs.pop_cost = pop_cost(s, gs) cdef class ArcEagerGold: cdef GoldParseStateC c cdef Pool mem def __init__(self, ArcEager moves, StateClass stcls, Example example): self.mem = Pool() heads, labels = example.get_aligned_parse(projectivize=True) labels = [label if label is not None else "" for label in labels] labels = [example.x.vocab.strings.add(label) for label in labels] sent_starts = example.get_aligned_sent_starts() assert len(heads) == len(labels) == len(sent_starts), (len(heads), len(labels), len(sent_starts)) self.c = create_gold_state(self.mem, stcls.c, heads, labels, sent_starts) def update(self, StateClass stcls): update_gold_state(&self.c, stcls.c) cdef int check_state_gold(char state_bits, char flag) nogil: cdef char one = 1 return 1 if (state_bits & (one << flag)) else 0 cdef int set_state_flag(char state_bits, char flag, int value) nogil: cdef char one = 1 if value: return state_bits | (one << flag) else: return state_bits & ~(one << flag) cdef int is_head_in_stack(const GoldParseStateC* gold, int i) nogil: return check_state_gold(gold.state_bits[i], HEAD_IN_STACK) cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) nogil: return check_state_gold(gold.state_bits[i], HEAD_IN_BUFFER) cdef int is_head_unknown(const GoldParseStateC* gold, int i) nogil: return check_state_gold(gold.state_bits[i], HEAD_UNKNOWN) cdef int is_sent_start(const GoldParseStateC* gold, int i) nogil: return check_state_gold(gold.state_bits[i], IS_SENT_START) cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) nogil: return check_state_gold(gold.state_bits[i], SENT_START_UNKNOWN) # Helper functions for the arc-eager oracle cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil: cdef weight_t cost = 0 b0 = state.B(0) if b0 < 0: return 9000 if is_head_in_stack(gold, b0): cost += 1 cost += gold.n_kids_in_stack[b0] if Break.is_valid(state, 0) and is_sent_start(gold, state.B(1)): cost += 1 return cost cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil: cdef weight_t cost = 0 s0 = state.S(0) if s0 < 0: return 9000 if is_head_in_buffer(gold, s0): cost += 1 cost += gold.n_kids_in_buffer[s0] return cost cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil: if is_head_unknown(gold, child): return True elif gold.heads[child] == head: return True else: return False cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) nogil: if is_head_unknown(gold, child): return True elif label == 0: return True elif gold.labels[child] == label: return True else: return False cdef bint _is_gold_root(const GoldParseStateC* gold, int word) nogil: return gold.heads[word] == word or is_head_unknown(gold, word) cdef class Shift: """Move the first word of the buffer onto the stack and mark it as "shifted" Validity: * If stack is empty * At least two words in sentence * Word has not been shifted before Cost: push_cost Action: * Mark B[0] as 'shifted' * Push stack * Advance buffer """ @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: if st.stack_depth() == 0: return 1 elif st.buffer_length() < 2: return 0 elif st.is_sent_start(st.B(0)): return 0 elif st.is_unshiftable(st.B(0)): return 0 else: return 1 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.push() @staticmethod cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil: gold = _gold return gold.push_cost cdef class Reduce: """ Pop from the stack. If it has no head and the stack isn't empty, place it back on the buffer. Validity: * Stack not empty * Buffer nt empty * Stack depth 1 and cannot sent start l_edge(st.B(0)) Cost: * If B[0] is the start of a sentence, cost is 0 * Arcs between stack and buffer * If arc has no head, we're saving arcs between S[0] and S[1:], so decrement cost by those arcs. """ @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: if st.stack_depth() == 0: return False elif st.buffer_length() == 0: return True elif st.stack_depth() == 1 and st.cannot_sent_start(st.l_edge(st.B(0))): return False else: return True @staticmethod cdef int transition(StateC* st, attr_t label) nogil: if st.has_head(st.S(0)) or st.stack_depth() == 1: st.pop() else: st.unshift() @staticmethod cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil: gold = _gold if state.is_sent_start(state.B(0)): return 0 s0 = state.S(0) cost = gold.pop_cost if not state.has_head(s0): # Decrement cost for the arcs we save, as we'll be putting this # back to the buffer if is_head_in_stack(gold, s0): cost -= 1 cost -= gold.n_kids_in_stack[s0] return cost cdef class LeftArc: """Add an arc between B[0] and S[0], replacing the previous head of S[0] if one is set. Pop S[0] from the stack. Validity: * len(S) >= 1 * len(B) >= 1 * not is_sent_start(B[0]) Cost: pop_cost - Arc(B[0], S[0], label) + (Arc(S[1], S[0]) if H(S[0]) else Arcs(S, S[0])) """ @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: if st.stack_depth() == 0: return 0 elif st.buffer_length() == 0: return 0 elif st.is_sent_start(st.B(0)): return 0 elif label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1): return 0 else: return 1 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.add_arc(st.B(0), st.S(0), label) # If we change the stack, it's okay to remove the shifted mark, as # we can't get in an infinite loop this way. st.set_reshiftable(st.B(0)) st.pop() @staticmethod cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil: gold = _gold cdef weight_t cost = gold.pop_cost s0 = state.S(0) s1 = state.S(1) b0 = state.B(0) if state.has_head(s0): # Increment cost if we're clobbering a correct arc cost += gold.heads[s0] == s1 else: # If there's no head, we're losing arcs between S0 and S[1:]. cost += is_head_in_stack(gold, s0) cost += gold.n_kids_in_stack[s0] if b0 != -1 and s0 != -1 and gold.heads[s0] == b0: cost -= 1 cost += not label_is_gold(gold, s0, label) return cost cdef class RightArc: """ Add an arc from S[0] to B[0]. Push B[0]. Validity: * len(S) >= 1 * len(B) >= 1 * not is_sent_start(B[0]) Cost: push_cost + (not shifted[b0] and Arc(B[1:], B[0])) - Arc(S[0], B[0], label) """ @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: if st.stack_depth() == 0: return 0 elif st.buffer_length() == 0: return 0 elif st.is_sent_start(st.B(0)): return 0 elif label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1): # If there's (perhaps partial) parse pre-set, don't allow cycle. return 0 else: return 1 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.add_arc(st.S(0), st.B(0), label) st.push() @staticmethod cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil: gold = _gold cost = gold.push_cost s0 = state.S(0) b0 = state.B(0) if s0 != -1 and b0 != -1 and gold.heads[b0] == s0: cost -= 1 cost += not label_is_gold(gold, b0, label) elif is_head_in_buffer(gold, b0) and not state.is_unshiftable(b0): cost += 1 return cost cdef class Break: """Mark the second word of the buffer as the start of a sentence. Validity: * len(buffer) >= 2 * B[1] == B[0] + 1 * not is_sent_start(B[1]) * not cannot_sent_start(B[1]) Action: * mark_sent_start(B[1]) Cost: * not is_sent_start(B[1]) * Arcs between B[0] and B[1:] * Arcs between S and B[1] """ @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: cdef int i if st.buffer_length() < 2: return False elif st.B(1) != st.B(0) + 1: return False elif st.is_sent_start(st.B(1)): return False elif st.cannot_sent_start(st.B(1)): return False else: return True @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.set_sent_start(st.B(1), 1) @staticmethod cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil: gold = _gold cdef int b0 = state.B(0) cdef int cost = 0 cdef int si for i in range(state.stack_depth()): si = state.S(i) if is_head_in_buffer(gold, si): cost += 1 cost += gold.n_kids_in_buffer[si] # We need to score into B[1:], so subtract deps that are at b0 if gold.heads[b0] == si: cost -= 1 if gold.heads[si] == b0: cost -= 1 if not is_sent_start(gold, state.B(1)) \ and not is_sent_start_unknown(gold, state.B(1)): cost += 1 return cost cdef void* _init_state(Pool mem, int length, void* tokens) except NULL: st = new StateC(tokens, length) return st cdef int _del_state(Pool mem, void* state, void* x) except -1: cdef StateC* st = state del st cdef class ArcEager(TransitionSystem): def __init__(self, *args, **kwargs): TransitionSystem.__init__(self, *args, **kwargs) self.init_beam_state = _init_state self.del_beam_state = _del_state @classmethod def get_actions(cls, **kwargs): min_freq = kwargs.get('min_freq', None) actions = defaultdict(lambda: Counter()) actions[SHIFT][''] = 1 actions[REDUCE][''] = 1 for label in kwargs.get('left_labels', []): actions[LEFT][label] = 1 actions[SHIFT][label] = 1 for label in kwargs.get('right_labels', []): actions[RIGHT][label] = 1 actions[REDUCE][label] = 1 for example in kwargs.get('examples', []): heads, labels = example.get_aligned_parse(projectivize=True) for child, (head, label) in enumerate(zip(heads, labels)): if head is None or label is None: continue if label.upper() == 'ROOT' : label = 'ROOT' if head == child: actions[BREAK][label] += 1 if head < child: actions[RIGHT][label] += 1 actions[REDUCE][''] += 1 elif head > child: actions[LEFT][label] += 1 actions[SHIFT][''] += 1 if min_freq is not None: for action, label_freqs in actions.items(): for label, freq in list(label_freqs.items()): if freq < min_freq: label_freqs.pop(label) # Ensure these actions are present actions[BREAK].setdefault('ROOT', 0) if kwargs.get("learn_tokens") is True: actions[RIGHT].setdefault('subtok', 0) actions[LEFT].setdefault('subtok', 0) # Used for backoff actions[RIGHT].setdefault('dep', 0) actions[LEFT].setdefault('dep', 0) return actions @property def action_types(self): return (SHIFT, REDUCE, LEFT, RIGHT, BREAK) def transition(self, StateClass state, action): cdef Transition t = self.lookup_transition(action) t.do(state.c, t.label) return state def is_gold_parse(self, StateClass state, ArcEagerGold gold): for i in range(state.c.length): token = state.c.safe_get(i) if not arc_is_gold(&gold.c, i, i+token.head): return False elif not label_is_gold(&gold.c, i, token.dep): return False return True def init_gold(self, StateClass state, Example example): gold = ArcEagerGold(self, state, example) self._replace_unseen_labels(gold) return gold def init_gold_batch(self, examples): # TODO: Projectivitity? all_states = self.init_batch([eg.predicted for eg in examples]) golds = [] states = [] for state, eg in zip(all_states, examples): if self.has_gold(eg) and not state.is_final(): golds.append(self.init_gold(state, eg)) states.append(state) n_steps = sum([len(s.queue) for s in states]) return states, golds, n_steps def _replace_unseen_labels(self, ArcEagerGold gold): backoff_label = self.strings["dep"] root_label = self.strings["ROOT"] left_labels = self.labels[LEFT] right_labels = self.labels[RIGHT] break_labels = self.labels[BREAK] for i in range(gold.c.length): if not is_head_unknown(&gold.c, i): head = gold.c.heads[i] label = self.strings[gold.c.labels[i]] if head > i and label not in left_labels: gold.c.labels[i] = backoff_label elif head < i and label not in right_labels: gold.c.labels[i] = backoff_label elif head == i and label not in break_labels: gold.c.labels[i] = root_label return gold cdef Transition lookup_transition(self, object name_or_id) except *: if isinstance(name_or_id, int): return self.c[name_or_id] name = name_or_id if '-' in name: move_str, label_str = name.split('-', 1) label = self.strings[label_str] else: move_str = name label = 0 move = MOVE_NAMES.index(move_str) for i in range(self.n_moves): if self.c[i].move == move and self.c[i].label == label: return self.c[i] raise KeyError(f"Unknown transition: {name}") def move_name(self, int move, attr_t label): label_str = self.strings[label] if label_str: return MOVE_NAMES[move] + '-' + label_str else: return MOVE_NAMES[move] def class_name(self, int i): return self.move_name(self.c[i].move, self.c[i].label) cdef Transition init_transition(self, int clas, int move, attr_t label) except *: # TODO: Apparent Cython bug here when we try to use the Transition() # constructor with the function pointers cdef Transition t t.score = 0 t.clas = clas t.move = move t.label = label if move == SHIFT: t.is_valid = Shift.is_valid t.do = Shift.transition t.get_cost = Shift.cost elif move == REDUCE: t.is_valid = Reduce.is_valid t.do = Reduce.transition t.get_cost = Reduce.cost elif move == LEFT: t.is_valid = LeftArc.is_valid t.do = LeftArc.transition t.get_cost = LeftArc.cost elif move == RIGHT: t.is_valid = RightArc.is_valid t.do = RightArc.transition t.get_cost = RightArc.cost elif move == BREAK: t.is_valid = Break.is_valid t.do = Break.transition t.get_cost = Break.cost else: raise ValueError(Errors.E019.format(action=move, src='arc_eager')) return t def set_annotations(self, StateClass state, Doc doc): for arc in state.arcs: doc.c[arc["child"]].head = arc["head"] - arc["child"] doc.c[arc["child"]].dep = arc["label"] for i in range(doc.length): if doc.c[i].head == 0: doc.c[i].dep = self.root_label set_children_from_heads(doc.c, 0, doc.length) def has_gold(self, Example eg, start=0, end=None): for word in eg.y[start:end]: if word.dep != 0: return True else: return False cdef int set_valid(self, int* output, const StateC* st) nogil: cdef int[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(st, 0) is_valid[REDUCE] = Reduce.is_valid(st, 0) is_valid[LEFT] = LeftArc.is_valid(st, 0) is_valid[RIGHT] = RightArc.is_valid(st, 0) is_valid[BREAK] = Break.is_valid(st, 0) cdef int i for i in range(self.n_moves): if self.c[i].label == SUBTOK_LABEL: output[i] = self.c[i].is_valid(st, self.c[i].label) else: output[i] = is_valid[self.c[i].move] def get_cost(self, StateClass stcls, gold, int i): if not isinstance(gold, ArcEagerGold): raise TypeError(Errors.E909.format(name="ArcEagerGold")) cdef ArcEagerGold gold_ = gold gold_state = gold_.c n_gold = 0 if self.c[i].is_valid(stcls.c, self.c[i].label): cost = self.c[i].get_cost(stcls.c, &gold_state, self.c[i].label) else: cost = 9000 return cost cdef int set_costs(self, int* is_valid, weight_t* costs, const StateC* state, gold) except -1: if not isinstance(gold, ArcEagerGold): raise TypeError(Errors.E909.format(name="ArcEagerGold")) cdef ArcEagerGold gold_ = gold gold_state = gold_.c update_gold_state(&gold_state, state) self.set_valid(is_valid, state) cdef int n_gold = 0 for i in range(self.n_moves): if is_valid[i]: costs[i] = self.c[i].get_cost(state, &gold_state, self.c[i].label) if costs[i] <= 0: n_gold += 1 else: costs[i] = 9000 if n_gold < 1: for i in range(self.n_moves): print(self.get_class_name(i), is_valid[i], costs[i]) print("Gold sent starts?", is_sent_start(&gold_state, state.B(0)), is_sent_start(&gold_state, state.B(1))) raise ValueError def get_oracle_sequence_from_state(self, StateClass state, ArcEagerGold gold, _debug=None): cdef int i cdef Pool mem = Pool() # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.n_moves > 0 costs = mem.alloc(self.n_moves, sizeof(float)) is_valid = mem.alloc(self.n_moves, sizeof(int)) history = [] debug_log = [] failed = False while not state.is_final(): try: self.set_costs(is_valid, costs, state.c, gold) except ValueError: failed = True break min_cost = min(costs[i] for i in range(self.n_moves)) for i in range(self.n_moves): if is_valid[i] and costs[i] <= min_cost: action = self.c[i] history.append(i) s0 = state.S(0) b0 = state.B(0) if _debug: example = _debug debug_log.append(" ".join(( self.get_class_name(i), state.print_state() ))) action.do(state.c, action.label) break else: failed = False break if failed: example = _debug print("Actions") for i in range(self.n_moves): print(self.get_class_name(i)) print("Gold") for token in example.y: print(token.i, token.text, token.dep_, token.head.text) aligned_heads, aligned_labels = example.get_aligned_parse() print("Aligned heads") for i, head in enumerate(aligned_heads): print(example.x[i], example.x[head] if head is not None else "__") print("Aligned sent starts") print(example.get_aligned_sent_starts()) print("Predicted tokens") print([(w.i, w.text) for w in example.x]) s0 = state.S(0) b0 = state.B(0) debug_log.append(" ".join(( "?", "S0=", (example.x[s0].text if s0 >= 0 else "-"), "B0=", (example.x[b0].text if b0 >= 0 else "-"), "S0 head?", str(state.has_head(state.S(0))), ))) s0 = state.S(0) b0 = state.B(0) print("\n".join(debug_log)) print("Arc is gold B0, S0?", arc_is_gold(&gold.c, b0, s0)) print("Arc is gold S0, B0?", arc_is_gold(&gold.c, s0, b0)) print("is_head_unknown(s0)", is_head_unknown(&gold.c, s0)) print("is_head_unknown(b0)", is_head_unknown(&gold.c, b0)) print("b0", b0, "gold.heads[s0]", gold.c.heads[s0]) print("Stack", [example.x[i] for i in state.stack]) print("Buffer", [example.x[i] for i in state.queue]) raise ValueError(Errors.E024) return history