import pytest from spacy import registry from spacy.pipeline import DependencyParser from spacy.pipeline._parser_internals.arc_eager import ArcEager from spacy.pipeline._parser_internals.nonproj import projectivize from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL from spacy.tokens import Doc from spacy.training import Example from spacy.vocab import Vocab def get_sequence_costs(M, words, heads, deps, transitions): doc = Doc(Vocab(), words=words) example = Example.from_dict(doc, {"heads": heads, "deps": deps}) states, golds, _ = M.init_gold_batch([example]) state = states[0] gold = golds[0] cost_history = [] for gold_action in transitions: gold.update(state) state_costs = {} for i in range(M.n_moves): name = M.class_name(i) state_costs[name] = M.get_cost(state, gold, i) M.transition(state, gold_action) cost_history.append(state_costs) return state, cost_history @pytest.fixture def vocab(): return Vocab() @pytest.fixture def arc_eager(vocab): moves = ArcEager(vocab.strings, ArcEager.get_actions()) moves.add_action(2, "left") moves.add_action(3, "right") return moves @pytest.mark.issue(7056) def test_issue7056(): """Test that the Unshift transition works properly, and doesn't cause sentence segmentation errors.""" vocab = Vocab() ae = ArcEager( vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"]) ) doc = Doc(vocab, words="Severe pain , after trauma".split()) state = ae.init_batch([doc])[0] ae.apply_transition(state, "S") ae.apply_transition(state, "L-amod") ae.apply_transition(state, "S") ae.apply_transition(state, "S") ae.apply_transition(state, "S") ae.apply_transition(state, "R-pobj") ae.apply_transition(state, "D") ae.apply_transition(state, "D") ae.apply_transition(state, "D") assert not state.eol() def test_oracle_four_words(arc_eager, vocab): words = ["a", "b", "c", "d"] heads = [1, 1, 3, 3] deps = ["left", "ROOT", "left", "ROOT"] for dep in deps: arc_eager.add_action(2, dep) # Left arc_eager.add_action(3, dep) # Right actions = ["S", "L-left", "B-ROOT", "S", "D", "S", "L-left", "S", "D"] state, cost_history = get_sequence_costs(arc_eager, words, heads, deps, actions) expected_gold = [ ["S"], ["B-ROOT", "L-left"], ["B-ROOT"], ["S"], ["D"], ["S"], ["L-left"], ["S"], ["D"], ] assert state.is_final() for i, state_costs in enumerate(cost_history): # Check gold moves is 0 cost golds = [act for act, cost in state_costs.items() if cost < 1] assert golds == expected_gold[i], (i, golds, expected_gold[i]) annot_tuples = [ (0, "When", "WRB", 11, "advmod", "O"), (1, "Walter", "NNP", 2, "compound", "B-PERSON"), (2, "Rodgers", "NNP", 11, "nsubj", "L-PERSON"), (3, ",", ",", 2, "punct", "O"), (4, "our", "PRP$", 6, "poss", "O"), (5, "embedded", "VBN", 6, "amod", "O"), (6, "reporter", "NN", 2, "appos", "O"), (7, "with", "IN", 6, "prep", "O"), (8, "the", "DT", 10, "det", "B-ORG"), (9, "3rd", "NNP", 10, "compound", "I-ORG"), (10, "Cavalry", "NNP", 7, "pobj", "L-ORG"), (11, "says", "VBZ", 44, "advcl", "O"), (12, "three", "CD", 13, "nummod", "U-CARDINAL"), (13, "battalions", "NNS", 16, "nsubj", "O"), (14, "of", "IN", 13, "prep", "O"), (15, "troops", "NNS", 14, "pobj", "O"), (16, "are", "VBP", 11, "ccomp", "O"), (17, "on", "IN", 16, "prep", "O"), (18, "the", "DT", 19, "det", "O"), (19, "ground", "NN", 17, "pobj", "O"), (20, ",", ",", 17, "punct", "O"), (21, "inside", "IN", 17, "prep", "O"), (22, "Baghdad", "NNP", 21, "pobj", "U-GPE"), (23, "itself", "PRP", 22, "appos", "O"), (24, ",", ",", 16, "punct", "O"), (25, "have", "VBP", 26, "aux", "O"), (26, "taken", "VBN", 16, "dep", "O"), (27, "up", "RP", 26, "prt", "O"), (28, "positions", "NNS", 26, "dobj", "O"), (29, "they", "PRP", 31, "nsubj", "O"), (30, "'re", "VBP", 31, "aux", "O"), (31, "going", "VBG", 26, "parataxis", "O"), (32, "to", "TO", 33, "aux", "O"), (33, "spend", "VB", 31, "xcomp", "O"), (34, "the", "DT", 35, "det", "B-TIME"), (35, "night", "NN", 33, "dobj", "L-TIME"), (36, "there", "RB", 33, "advmod", "O"), (37, "presumably", "RB", 33, "advmod", "O"), (38, ",", ",", 44, "punct", "O"), (39, "how", "WRB", 40, "advmod", "O"), (40, "many", "JJ", 41, "amod", "O"), (41, "soldiers", "NNS", 44, "pobj", "O"), (42, "are", "VBP", 44, "aux", "O"), (43, "we", "PRP", 44, "nsubj", "O"), (44, "talking", "VBG", 44, "ROOT", "O"), (45, "about", "IN", 44, "prep", "O"), (46, "right", "RB", 47, "advmod", "O"), (47, "now", "RB", 44, "advmod", "O"), (48, "?", ".", 44, "punct", "O"), ] def test_get_oracle_actions(): ids, words, tags, heads, deps, ents = [], [], [], [], [], [] for id_, word, tag, head, dep, ent in annot_tuples: ids.append(id_) words.append(word) tags.append(tag) heads.append(head) deps.append(dep) ents.append(ent) doc = Doc(Vocab(), words=[t[1] for t in annot_tuples]) cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = DependencyParser(doc.vocab, model) parser.moves.add_action(0, "") parser.moves.add_action(1, "") parser.moves.add_action(1, "") parser.moves.add_action(4, "ROOT") heads, deps = projectivize(heads, deps) for i, (head, dep) in enumerate(zip(heads, deps)): if head > i: parser.moves.add_action(2, dep) elif head < i: parser.moves.add_action(3, dep) example = Example.from_dict( doc, {"words": words, "tags": tags, "heads": heads, "deps": deps} ) parser.moves.get_oracle_sequence(example) def test_oracle_dev_sentence(vocab, arc_eager): words_deps_heads = """ Rolls-Royce nn Inc. Motor nn Inc. Cars nn Inc. Inc. nsubj said said ROOT said it nsubj expects expects ccomp said its poss sales U.S. nn sales sales nsubj steady to aux steady remain cop steady steady xcomp expects at prep steady about quantmod 1,200 1,200 num cars cars pobj at in prep steady 1990 pobj in . punct said """ expected_transitions = [ "S", # Shift "Rolls-Royce" "S", # Shift 'Motor' "S", # Shift 'Cars' "L-nn", # Attach 'Cars' to 'Inc.' "L-nn", # Attach 'Motor' to 'Inc.' "L-nn", # Attach 'Rolls-Royce' to 'Inc.' "S", # Shift "Inc." "L-nsubj", # Attach 'Inc.' to 'said' "S", # Shift 'said' "S", # Shift 'it' "L-nsubj", # Attach 'it.' to 'expects' "R-ccomp", # Attach 'expects' to 'said' "S", # Shift 'its' "S", # Shift 'U.S.' "L-nn", # Attach 'U.S.' to 'sales' "L-poss", # Attach 'its' to 'sales' "S", # Shift 'sales' "S", # Shift 'to' "S", # Shift 'remain' "L-cop", # Attach 'remain' to 'steady' "L-aux", # Attach 'to' to 'steady' "L-nsubj", # Attach 'sales' to 'steady' "R-xcomp", # Attach 'steady' to 'expects' "R-prep", # Attach 'at' to 'steady' "S", # Shift 'about' "L-quantmod", # Attach "about" to "1,200" "S", # Shift "1,200" "L-num", # Attach "1,200" to "cars" "R-pobj", # Attach "cars" to "at" "D", # Reduce "cars" "D", # Reduce "at" "R-prep", # Attach "in" to "steady" "R-pobj", # Attach "1990" to "in" "D", # Reduce "1990" "D", # Reduce "in" "D", # Reduce "steady" "D", # Reduce "expects" "R-punct", # Attach "." to "said" "D", # Reduce "." "D", # Reduce "said" ] gold_words = [] gold_deps = [] gold_heads = [] for line in words_deps_heads.strip().split("\n"): line = line.strip() if not line: continue word, dep, head = line.split() gold_words.append(word) gold_deps.append(dep) gold_heads.append(head) gold_heads = [gold_words.index(head) for head in gold_heads] for dep in gold_deps: arc_eager.add_action(2, dep) # Left arc_eager.add_action(3, dep) # Right doc = Doc(Vocab(), words=gold_words) example = Example.from_dict(doc, {"heads": gold_heads, "deps": gold_deps}) ae_oracle_actions = arc_eager.get_oracle_sequence(example, _debug=False) ae_oracle_actions = [arc_eager.get_class_name(i) for i in ae_oracle_actions] assert ae_oracle_actions == expected_transitions def test_oracle_bad_tokenization(vocab, arc_eager): words_deps_heads = """ [catalase] dep is : punct is that nsubj is is root is bad comp is """ gold_words = [] gold_deps = [] gold_heads = [] for line in words_deps_heads.strip().split("\n"): line = line.strip() if not line: continue word, dep, head = line.split() gold_words.append(word) gold_deps.append(dep) gold_heads.append(head) gold_heads = [gold_words.index(head) for head in gold_heads] for dep in gold_deps: arc_eager.add_action(2, dep) # Left arc_eager.add_action(3, dep) # Right reference = Doc(Vocab(), words=gold_words, deps=gold_deps, heads=gold_heads) predicted = Doc( reference.vocab, words=["[", "catalase", "]", ":", "that", "is", "bad"] ) example = Example(predicted=predicted, reference=reference) ae_oracle_actions = arc_eager.get_oracle_sequence(example, _debug=False) ae_oracle_actions = [arc_eager.get_class_name(i) for i in ae_oracle_actions] assert ae_oracle_actions