from typing import Optional, Dict, Any, Tuple, Union, Callable, List import srsly import tqdm from pathlib import Path from wasabi import msg import thinc import thinc.schedules from thinc.api import use_pytorch_for_gpu_memory, require_gpu, fix_random_seed from thinc.api import Config, Optimizer import random import typer import logging from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error from ._util import import_code, get_sourced_components from ..language import Language from .. import util from ..gold.example import Example from ..errors import Errors @app.command( "train", context_settings={"allow_extra_args": True, "ignore_unknown_options": True} ) def train_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments config_path: Path = Arg(..., help="Path to config file", exists=True), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), resume: bool = Opt(False, "--resume", "-R", help="Resume training"), # fmt: on ): """ Train or update a spaCy model. Requires data in spaCy's binary format. To convert data from other formats, use the `spacy convert` command. The config file includes all settings and hyperparameters used during traing. To override settings in the config, e.g. settings that point to local paths or that you want to experiment with, you can override them as command line options. For instance, --training.batch_size 128 overrides the value of "batch_size" in the block "[training]". The --code argument lets you pass in a Python file that's imported before training. It can be used to register custom functions and architectures that can then be referenced in the config. """ util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR) verify_cli_args(config_path, output_path) overrides = parse_config_overrides(ctx.args) import_code(code_path) train( config_path, output_path=output_path, config_overrides=overrides, use_gpu=use_gpu, resume_training=resume, ) def train( config_path: Path, output_path: Optional[Path] = None, config_overrides: Dict[str, Any] = {}, use_gpu: int = -1, resume_training: bool = False, ) -> None: if use_gpu >= 0: msg.info(f"Using GPU: {use_gpu}") require_gpu(use_gpu) else: msg.info("Using CPU") msg.info(f"Loading config and nlp from: {config_path}") with show_validation_error(config_path): config = util.load_config( config_path, overrides=config_overrides, interpolate=True ) if config.get("training", {}).get("seed") is not None: fix_random_seed(config["training"]["seed"]) if config.get("system", {}).get("use_pytorch_for_gpu_memory"): # It feels kind of weird to not have a default for this. use_pytorch_for_gpu_memory() # Use original config here before it's resolved to functions sourced_components = get_sourced_components(config) with show_validation_error(config_path): nlp, config = util.load_model_from_config(config) if config["training"]["vectors"] is not None: util.load_vectors_into_model(nlp, config["training"]["vectors"]) verify_config(nlp) raw_text, tag_map, morph_rules, weights_data = load_from_paths(config) T_cfg = config["training"] optimizer = T_cfg["optimizer"] train_corpus = T_cfg["train_corpus"] dev_corpus = T_cfg["dev_corpus"] batcher = T_cfg["batcher"] train_logger = T_cfg["logger"] # Components that shouldn't be updated during training frozen_components = T_cfg["frozen_components"] # Sourced components that require resume_training resume_components = [p for p in sourced_components if p not in frozen_components] msg.info(f"Pipeline: {nlp.pipe_names}") if resume_components: with nlp.select_pipes(enable=resume_components): msg.info(f"Resuming training for: {resume_components}") nlp.resume_training(sgd=optimizer) with nlp.select_pipes(disable=[*frozen_components, *resume_components]): nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer) if tag_map: # Replace tag map with provided mapping nlp.vocab.morphology.load_tag_map(tag_map) if morph_rules: # Load morph rules nlp.vocab.morphology.load_morph_exceptions(morph_rules) # Load a pretrained tok2vec model - cf. CLI command 'pretrain' if weights_data is not None: tok2vec_path = config["pretraining"].get("tok2vec_model", None) if tok2vec_path is None: msg.fail( f"To use a pretrained tok2vec model, the config needs to specify which " f"tok2vec layer to load in the setting [pretraining.tok2vec_model].", exits=1, ) tok2vec = config for subpath in tok2vec_path.split("."): tok2vec = tok2vec.get(subpath) if not tok2vec: err = f"Could not locate the tok2vec model at {tok2vec_path}" msg.fail(err, exits=1) tok2vec.from_bytes(weights_data) # Create iterator, which yields out info after each optimization step. msg.info("Start training") score_weights = T_cfg["score_weights"] training_step_iterator = train_while_improving( nlp, optimizer, create_train_batches(train_corpus(nlp), batcher, T_cfg["max_epochs"]), create_evaluation_callback(nlp, dev_corpus, score_weights), dropout=T_cfg["dropout"], accumulate_gradient=T_cfg["accumulate_gradient"], patience=T_cfg["patience"], max_steps=T_cfg["max_steps"], eval_frequency=T_cfg["eval_frequency"], raw_text=None, exclude=frozen_components, ) msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}") print_row, finalize_logger = train_logger(nlp) try: progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False) progress.set_description(f"Epoch 1") for batch, info, is_best_checkpoint in training_step_iterator: progress.update(1) if is_best_checkpoint is not None: progress.close() print_row(info) if is_best_checkpoint and output_path is not None: update_meta(T_cfg, nlp, info) nlp.to_disk(output_path / "model-best") progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False) progress.set_description(f"Epoch {info['epoch']}") except Exception as e: finalize_logger() if output_path is not None: # We don't want to swallow the traceback if we don't have a # specific error. msg.warn( f"Aborting and saving the final best model. " f"Encountered exception: {str(e)}" ) nlp.to_disk(output_path / "model-final") raise e finally: finalize_logger() if output_path is not None: final_model_path = output_path / "model-final" if optimizer.averages: with nlp.use_params(optimizer.averages): nlp.to_disk(final_model_path) else: nlp.to_disk(final_model_path) msg.good(f"Saved model to output directory {final_model_path}") def create_train_batches(iterator, batcher, max_epochs: int): epoch = 0 examples = list(iterator) if not examples: # Raise error if no data raise ValueError(Errors.E986) while max_epochs < 1 or epoch != max_epochs: random.shuffle(examples) for batch in batcher(examples): yield epoch, batch epoch += 1 def create_evaluation_callback( nlp: Language, dev_corpus: Callable, weights: Dict[str, float] ) -> Callable[[], Tuple[float, Dict[str, float]]]: def evaluate() -> Tuple[float, Dict[str, float]]: dev_examples = list(dev_corpus(nlp)) scores = nlp.evaluate(dev_examples) # Calculate a weighted sum based on score_weights for the main score try: weighted_score = sum( scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights ) except KeyError as e: keys = list(scores.keys()) err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys) raise KeyError(err) from None return weighted_score, scores return evaluate def train_while_improving( nlp: Language, optimizer: Optimizer, train_data, evaluate, *, dropout: float, eval_frequency: int, accumulate_gradient: int, patience: int, max_steps: int, raw_text: List[Dict[str, str]], exclude: List[str], ): """Train until an evaluation stops improving. Works as a generator, with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`, where info is a dict, and is_best_checkpoint is in [True, False, None] -- None indicating that the iteration was not evaluated as a checkpoint. The evaluation is conducted by calling the evaluate callback. Positional arguments: nlp: The spaCy pipeline to evaluate. optimizer: The optimizer callable. train_data (Iterable[Batch]): A generator of batches, with the training data. Each batch should be a Sized[Tuple[Input, Annot]]. The training data iterable needs to take care of iterating over the epochs and shuffling. evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation. The callback should take no arguments and return a tuple `(main_score, other_scores)`. The main_score should be a float where higher is better. other_scores can be any object. Every iteration, the function yields out a tuple with: * batch: A list of Example objects. * info: A dict with various information about the last update (see below). * is_best_checkpoint: A value in None, False, True, indicating whether this was the best evaluation so far. You should use this to save the model checkpoints during training. If None, evaluation was not conducted on that iteration. False means evaluation was conducted, but a previous evaluation was better. The info dict provides the following information: epoch (int): How many passes over the data have been completed. step (int): How many steps have been completed. score (float): The main score from the last evaluation. other_scores: : The other scores from the last evaluation. losses: The accumulated losses throughout training. checkpoints: A list of previous results, where each result is a (score, step, epoch) tuple. """ if isinstance(dropout, float): dropouts = thinc.schedules.constant(dropout) else: dropouts = dropout results = [] losses = {} if raw_text: random.shuffle(raw_text) raw_examples = [ Example.from_dict(nlp.make_doc(rt["text"]), {}) for rt in raw_text ] raw_batches = util.minibatch(raw_examples, size=8) for step, (epoch, batch) in enumerate(train_data): dropout = next(dropouts) for subbatch in subdivide_batch(batch, accumulate_gradient): nlp.update( subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude ) if raw_text: # If raw text is available, perform 'rehearsal' updates, # which use unlabelled data to reduce overfitting. raw_batch = list(next(raw_batches)) nlp.rehearse(raw_batch, sgd=optimizer, losses=losses, exclude=exclude) # TODO: refactor this so we don't have to run it separately in here for name, proc in nlp.pipeline: if ( name not in exclude and hasattr(proc, "model") and proc.model not in (True, False, None) ): proc.model.finish_update(optimizer) optimizer.step_schedules() if not (step % eval_frequency): if optimizer.averages: with nlp.use_params(optimizer.averages): score, other_scores = evaluate() else: score, other_scores = evaluate() results.append((score, step)) is_best_checkpoint = score == max(results)[0] else: score, other_scores = (None, None) is_best_checkpoint = None info = { "epoch": epoch, "step": step, "score": score, "other_scores": other_scores, "losses": losses, "checkpoints": results, } yield batch, info, is_best_checkpoint if is_best_checkpoint is not None: losses = {} # Stop if no improvement in `patience` updates (if specified) best_score, best_step = max(results) if patience and (step - best_step) >= patience: break # Stop if we've exhausted our max steps (if specified) if max_steps and step >= max_steps: break def subdivide_batch(batch, accumulate_gradient): batch = list(batch) batch.sort(key=lambda eg: len(eg.predicted)) sub_len = len(batch) // accumulate_gradient start = 0 for i in range(accumulate_gradient): subbatch = batch[start : start + sub_len] if subbatch: yield subbatch start += len(subbatch) subbatch = batch[start:] if subbatch: yield subbatch def update_meta( training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any] ) -> None: nlp.meta["performance"] = {} for metric in training["score_weights"]: nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0) for pipe_name in nlp.pipe_names: nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name] def load_from_paths( config: Config, ) -> Tuple[List[Dict[str, str]], Dict[str, dict], bytes]: # TODO: separate checks from loading raw_text = util.ensure_path(config["training"]["raw_text"]) if raw_text is not None: if not raw_text.exists(): msg.fail("Can't find raw text", raw_text, exits=1) raw_text = list(srsly.read_jsonl(config["training"]["raw_text"])) tag_map = {} morph_rules = {} weights_data = None init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"]) if init_tok2vec is not None: if not init_tok2vec.exists(): msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1) with init_tok2vec.open("rb") as file_: weights_data = file_.read() return raw_text, tag_map, morph_rules, weights_data def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> None: # Make sure all files and paths exists if they are needed if not config_path or not config_path.exists(): msg.fail("Config file not found", config_path, exits=1) if output_path is not None: if not output_path.exists(): output_path.mkdir() msg.good(f"Created output directory: {output_path}") def verify_config(nlp: Language) -> None: """Perform additional checks based on the config and loaded nlp object.""" # TODO: maybe we should validate based on the actual components, the list # in config["nlp"]["pipeline"] instead? for pipe_config in nlp.config["components"].values(): # We can't assume that the component name == the factory factory = pipe_config["factory"] if factory == "textcat": verify_textcat_config(nlp, pipe_config) def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None: # if 'positive_label' is provided: double check whether it's in the data and # the task is binary if pipe_config.get("positive_label"): textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", []) pos_label = pipe_config.get("positive_label") if pos_label not in textcat_labels: msg.fail( f"The textcat's 'positive_label' config setting '{pos_label}' " f"does not match any label in the training data.", exits=1, ) if len(textcat_labels) != 2: msg.fail( f"A textcat 'positive_label' '{pos_label}' was " f"provided for training data that does not appear to be a " f"binary classification problem with two labels.", exits=1, )