# coding: utf8 # cython: profile=True from __future__ import unicode_literals from libc.string cimport memcpy import numpy import srsly from collections import OrderedDict from thinc.neural.util import get_array_module from .lexeme cimport EMPTY_LEXEME from .lexeme cimport Lexeme from .typedefs cimport attr_t from .tokens.token cimport Token from .attrs cimport PROB, LANG, ORTH, TAG, POS from .structs cimport SerializedLexemeC from .compat import copy_reg, basestring_ from .errors import Errors from .lemmatizer import Lemmatizer from .attrs import intify_attrs, NORM from .vectors import Vectors from ._ml import link_vectors_to_models from .lookups import Lookups from . import util cdef class Vocab: """A look-up table that allows you to access `Lexeme` objects. The `Vocab` instance also provides access to the `StringStore`, and owns underlying C-data that is shared between `Doc` objects. DOCS: https://spacy.io/api/vocab """ def __init__(self, lex_attr_getters=None, tag_map=None, lemmatizer=None, strings=tuple(), lookups=None, oov_prob=-20., vectors_name=None, **deprecated_kwargs): """Create the vocabulary. lex_attr_getters (dict): A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. tag_map (dict): Dictionary mapping fine-grained tags to coarse-grained parts-of-speech, and optionally morphological attributes. lemmatizer (object): A lemmatizer. Defaults to `None`. strings (StringStore): StringStore that maps strings to integers, and vice versa. lookups (Lookups): Container for large lookup tables and dictionaries. name (unicode): Optional name to identify the vectors table. RETURNS (Vocab): The newly constructed object. """ lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {} tag_map = tag_map if tag_map is not None else {} if lookups in (None, True, False): lookups = Lookups() if lemmatizer in (None, True, False): lemmatizer = Lemmatizer(lookups) self.cfg = {'oov_prob': oov_prob} self.mem = Pool() self._by_orth = PreshMap() self.strings = StringStore() self.length = 0 if strings: for string in strings: _ = self[string] self.lex_attr_getters = lex_attr_getters self.morphology = Morphology(self.strings, tag_map, lemmatizer) self.vectors = Vectors(name=vectors_name) self.lookups = lookups @property def lang(self): langfunc = None if self.lex_attr_getters: langfunc = self.lex_attr_getters.get(LANG, None) return langfunc("_") if langfunc else "" property writing_system: """A dict with information about the language's writing system. To get the data, we use the vocab.lang property to fetch the Language class. If the Language class is not loaded, an empty dict is returned. """ def __get__(self): if not util.lang_class_is_loaded(self.lang): return {} lang_class = util.get_lang_class(self.lang) return dict(lang_class.Defaults.writing_system) def __len__(self): """The current number of lexemes stored. RETURNS (int): The current number of lexemes stored. """ return self.length def add_flag(self, flag_getter, int flag_id=-1): """Set a new boolean flag to words in the vocabulary. The flag_getter function will be called over the words currently in the vocab, and then applied to new words as they occur. You'll then be able to access the flag value on each token using token.check_flag(flag_id). See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`, `Token.check_flag`. flag_getter (callable): A function `f(unicode) -> bool`, to get the flag value. flag_id (int): An integer between 1 and 63 (inclusive), specifying the bit at which the flag will be stored. If -1, the lowest available bit will be chosen. RETURNS (int): The integer ID by which the flag value can be checked. DOCS: https://spacy.io/api/vocab#add_flag """ if flag_id == -1: for bit in range(1, 64): if bit not in self.lex_attr_getters: flag_id = bit break else: raise ValueError(Errors.E062) elif flag_id >= 64 or flag_id < 1: raise ValueError(Errors.E063.format(value=flag_id)) for lex in self: lex.set_flag(flag_id, flag_getter(lex.orth_)) self.lex_attr_getters[flag_id] = flag_getter return flag_id cdef const LexemeC* get(self, Pool mem, unicode string) except NULL: """Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme` if necessary using memory acquired from the given pool. If the pool is the lexicon's own memory, the lexeme is saved in the lexicon. """ if string == "": return &EMPTY_LEXEME cdef LexemeC* lex cdef hash_t key = self.strings[string] lex = self._by_orth.get(key) cdef size_t addr if lex != NULL: assert lex.orth in self.strings if lex.orth != key: raise KeyError(Errors.E064.format(string=lex.orth, orth=key, orth_id=string)) return lex else: return self._new_lexeme(mem, string) cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL: """Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme` if necessary using memory acquired from the given pool. If the pool is the lexicon's own memory, the lexeme is saved in the lexicon. """ if orth == 0: return &EMPTY_LEXEME cdef LexemeC* lex lex = self._by_orth.get(orth) if lex != NULL: return lex else: return self._new_lexeme(mem, self.strings[orth]) cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL: if len(string) < 3 or self.length < 10000: mem = self.mem cdef bint is_oov = mem is not self.mem lex = mem.alloc(sizeof(LexemeC), 1) lex.orth = self.strings.add(string) lex.length = len(string) if self.vectors is not None: lex.id = self.vectors.key2row.get(lex.orth, 0) else: lex.id = 0 if self.lex_attr_getters is not None: for attr, func in self.lex_attr_getters.items(): value = func(string) if isinstance(value, unicode): value = self.strings.add(value) if attr == PROB: lex.prob = value elif value is not None: Lexeme.set_struct_attr(lex, attr, value) if not is_oov: self._add_lex_to_vocab(lex.orth, lex) if lex == NULL: raise ValueError(Errors.E085.format(string=string)) return lex cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1: self._by_orth.set(lex.orth, lex) self.length += 1 def __contains__(self, key): """Check whether the string or int key has an entry in the vocabulary. string (unicode): The ID string. RETURNS (bool) Whether the string has an entry in the vocabulary. DOCS: https://spacy.io/api/vocab#contains """ cdef hash_t int_key if isinstance(key, bytes): int_key = self.strings[key.decode("utf8")] elif isinstance(key, unicode): int_key = self.strings[key] else: int_key = key lex = self._by_orth.get(int_key) return lex is not NULL def __iter__(self): """Iterate over the lexemes in the vocabulary. YIELDS (Lexeme): An entry in the vocabulary. DOCS: https://spacy.io/api/vocab#iter """ cdef attr_t key cdef size_t addr for key, addr in self._by_orth.items(): lex = Lexeme(self, key) yield lex def __getitem__(self, id_or_string): """Retrieve a lexeme, given an int ID or a unicode string. If a previously unseen unicode string is given, a new lexeme is created and stored. id_or_string (int or unicode): The integer ID of a word, or its unicode string. If `int >= Lexicon.size`, `IndexError` is raised. If `id_or_string` is neither an int nor a unicode string, `ValueError` is raised. RETURNS (Lexeme): The lexeme indicated by the given ID. EXAMPLE: >>> apple = nlp.vocab.strings["apple"] >>> assert nlp.vocab[apple] == nlp.vocab[u"apple"] DOCS: https://spacy.io/api/vocab#getitem """ cdef attr_t orth if isinstance(id_or_string, unicode): orth = self.strings.add(id_or_string) else: orth = id_or_string return Lexeme(self, orth) cdef const TokenC* make_fused_token(self, substrings) except NULL: cdef int i tokens = self.mem.alloc(len(substrings) + 1, sizeof(TokenC)) for i, props in enumerate(substrings): props = intify_attrs(props, strings_map=self.strings, _do_deprecated=True) token = &tokens[i] # Set the special tokens up to have arbitrary attributes lex = self.get_by_orth(self.mem, props[ORTH]) token.lex = lex if TAG in props: self.morphology.assign_tag(token, props[TAG]) elif POS in props: # Don't allow POS to be set without TAG -- this causes problems, # see #1773 props.pop(POS) for attr_id, value in props.items(): Token.set_struct_attr(token, attr_id, value) # NORM is the only one that overlaps between the two # (which is maybe not great?) if attr_id != NORM: Lexeme.set_struct_attr(lex, attr_id, value) return tokens @property def vectors_length(self): return self.vectors.data.shape[1] def reset_vectors(self, *, width=None, shape=None): """Drop the current vector table. Because all vectors must be the same width, you have to call this to change the size of the vectors. """ if width is not None and shape is not None: raise ValueError(Errors.E065.format(width=width, shape=shape)) elif shape is not None: self.vectors = Vectors(shape=shape) else: width = width if width is not None else self.vectors.data.shape[1] self.vectors = Vectors(shape=(self.vectors.shape[0], width)) def prune_vectors(self, nr_row, batch_size=1024): """Reduce the current vector table to `nr_row` unique entries. Words mapped to the discarded vectors will be remapped to the closest vector among those remaining. For example, suppose the original table had vectors for the words: ['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to, two rows, we would discard the vectors for 'feline' and 'reclined'. These words would then be remapped to the closest remaining vector -- so "feline" would have the same vector as "cat", and "reclined" would have the same vector as "sat". The similarities are judged by cosine. The original vectors may be large, so the cosines are calculated in minibatches, to reduce memory usage. nr_row (int): The number of rows to keep in the vector table. batch_size (int): Batch of vectors for calculating the similarities. Larger batch sizes might be faster, while temporarily requiring more memory. RETURNS (dict): A dictionary keyed by removed words mapped to `(string, score)` tuples, where `string` is the entry the removed word was mapped to, and `score` the similarity score between the two words. DOCS: https://spacy.io/api/vocab#prune_vectors """ xp = get_array_module(self.vectors.data) # Make prob negative so it sorts by rank ascending # (key2row contains the rank) priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth) for lex in self if lex.orth in self.vectors.key2row] priority.sort() indices = xp.asarray([i for (prob, i, key) in priority], dtype="i") keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64") keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]]) toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]]) self.vectors = Vectors(data=keep, keys=keys, name=self.vectors.name) syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size) remap = {} for i, key in enumerate(keys[nr_row:]): self.vectors.add(key, row=syn_rows[i]) word = self.strings[key] synonym = self.strings[syn_keys[i]] score = scores[i] remap[word] = (synonym, score) link_vectors_to_models(self) return remap def get_vector(self, orth, minn=None, maxn=None): """Retrieve a vector for a word in the vocabulary. Words can be looked up by string or int ID. If no vectors data is loaded, ValueError is raised. RETURNS (numpy.ndarray): A word vector. Size and shape determined by the `vocab.vectors` instance. Usually, a numpy ndarray of shape (300,) and dtype float32. DOCS: https://spacy.io/api/vocab#get_vector """ if isinstance(orth, basestring_): orth = self.strings.add(orth) word = self[orth].orth_ if orth in self.vectors.key2row: return self.vectors[orth] # Assign default ngram limits to minn and maxn which is the length of the word. if minn is None: minn = len(word) if maxn is None: maxn = len(word) vectors = numpy.zeros((self.vectors_length,), dtype="f") # Fasttext's ngram computation taken from # https://github.com/facebookresearch/fastText ngrams_size = 0; for i in range(len(word)): ngram = "" if (word[i] and 0xC0) == 0x80: continue n = 1 j = i while (j < len(word) and n <= maxn): if n > maxn: break ngram += word[j] j = j + 1 while (j < len(word) and (word[j] and 0xC0) == 0x80): ngram += word[j] j = j + 1 if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))): if self.strings[ngram] in self.vectors.key2row: vectors = numpy.add(self.vectors[self.strings[ngram]],vectors) ngrams_size += 1 n = n + 1 if ngrams_size > 0: vectors = vectors * (1.0/ngrams_size) return vectors def set_vector(self, orth, vector): """Set a vector for a word in the vocabulary. Words can be referenced by string or int ID. orth (int / unicode): The word. vector (numpy.ndarray[ndim=1, dtype='float32']): The vector to set. DOCS: https://spacy.io/api/vocab#set_vector """ if isinstance(orth, basestring_): orth = self.strings.add(orth) if self.vectors.is_full and orth not in self.vectors: new_rows = max(100, int(self.vectors.shape[0]*1.3)) if self.vectors.shape[1] == 0: width = vector.size else: width = self.vectors.shape[1] self.vectors.resize((new_rows, width)) lex = self[orth] # Adds words to vocab self.vectors.add(orth, vector=vector) self.vectors.add(orth, vector=vector) def has_vector(self, orth): """Check whether a word has a vector. Returns False if no vectors have been loaded. Words can be looked up by string or int ID. orth (int / unicode): The word. RETURNS (bool): Whether the word has a vector. DOCS: https://spacy.io/api/vocab#has_vector """ if isinstance(orth, basestring_): orth = self.strings.add(orth) return orth in self.vectors def to_disk(self, path, exclude=tuple(), **kwargs): """Save the current state to a directory. path (unicode or Path): A path to a directory, which will be created if it doesn't exist. exclude (list): String names of serialization fields to exclude. DOCS: https://spacy.io/api/vocab#to_disk """ path = util.ensure_path(path) if not path.exists(): path.mkdir() setters = ["strings", "lexemes", "vectors"] exclude = util.get_serialization_exclude(setters, exclude, kwargs) if "strings" not in exclude: self.strings.to_disk(path / "strings.json") if "lexemes" not in exclude: with (path / "lexemes.bin").open("wb") as file_: file_.write(self.lexemes_to_bytes()) if "vectors" not in "exclude" and self.vectors is not None: self.vectors.to_disk(path) if "lookups" not in "exclude" and self.lookups is not None: self.lookups.to_disk(path) def from_disk(self, path, exclude=tuple(), **kwargs): """Loads state from a directory. Modifies the object in place and returns it. path (unicode or Path): A path to a directory. exclude (list): String names of serialization fields to exclude. RETURNS (Vocab): The modified `Vocab` object. DOCS: https://spacy.io/api/vocab#to_disk """ path = util.ensure_path(path) getters = ["strings", "lexemes", "vectors"] exclude = util.get_serialization_exclude(getters, exclude, kwargs) if "strings" not in exclude: self.strings.from_disk(path / "strings.json") # TODO: add exclude? if "lexemes" not in exclude: with (path / "lexemes.bin").open("rb") as file_: self.lexemes_from_bytes(file_.read()) if "vectors" not in exclude: if self.vectors is not None: self.vectors.from_disk(path, exclude=["strings"]) if self.vectors.name is not None: link_vectors_to_models(self) if "lookups" not in exclude: self.lookups.from_disk(path) return self def to_bytes(self, exclude=tuple(), **kwargs): """Serialize the current state to a binary string. exclude (list): String names of serialization fields to exclude. RETURNS (bytes): The serialized form of the `Vocab` object. DOCS: https://spacy.io/api/vocab#to_bytes """ def deserialize_vectors(): if self.vectors is None: return None else: return self.vectors.to_bytes() getters = OrderedDict(( ("strings", lambda: self.strings.to_bytes()), ("lexemes", lambda: self.lexemes_to_bytes()), ("vectors", deserialize_vectors), ("lookups", lambda: self.lookups.to_bytes()) )) exclude = util.get_serialization_exclude(getters, exclude, kwargs) return util.to_bytes(getters, exclude) def from_bytes(self, bytes_data, exclude=tuple(), **kwargs): """Load state from a binary string. bytes_data (bytes): The data to load from. exclude (list): String names of serialization fields to exclude. RETURNS (Vocab): The `Vocab` object. DOCS: https://spacy.io/api/vocab#from_bytes """ def serialize_vectors(b): if self.vectors is None: return None else: return self.vectors.from_bytes(b) setters = OrderedDict(( ("strings", lambda b: self.strings.from_bytes(b)), ("lexemes", lambda b: self.lexemes_from_bytes(b)), ("vectors", lambda b: serialize_vectors(b)), ("lookups", lambda b: self.lookups.from_bytes(b)) )) exclude = util.get_serialization_exclude(setters, exclude, kwargs) util.from_bytes(bytes_data, setters, exclude) if self.vectors.name is not None: link_vectors_to_models(self) return self def lexemes_to_bytes(self): cdef hash_t key cdef size_t addr cdef LexemeC* lexeme = NULL cdef SerializedLexemeC lex_data cdef int size = 0 for key, addr in self._by_orth.items(): if addr == 0: continue size += sizeof(lex_data.data) byte_string = b"\0" * size byte_ptr = byte_string cdef int j cdef int i = 0 for key, addr in self._by_orth.items(): if addr == 0: continue lexeme = addr lex_data = Lexeme.c_to_bytes(lexeme) for j in range(sizeof(lex_data.data)): byte_ptr[i] = lex_data.data[j] i += 1 return byte_string def lexemes_from_bytes(self, bytes bytes_data): """Load the binary vocabulary data from the given string.""" cdef LexemeC* lexeme cdef hash_t key cdef unicode py_str cdef int i = 0 cdef int j = 0 cdef SerializedLexemeC lex_data chunk_size = sizeof(lex_data.data) cdef void* ptr cdef unsigned char* bytes_ptr = bytes_data for i in range(0, len(bytes_data), chunk_size): lexeme = self.mem.alloc(1, sizeof(LexemeC)) for j in range(sizeof(lex_data.data)): lex_data.data[j] = bytes_ptr[i+j] Lexeme.c_from_bytes(lexeme, lex_data) prev_entry = self._by_orth.get(lexeme.orth) if prev_entry != NULL: memcpy(prev_entry, lexeme, sizeof(LexemeC)) continue ptr = self.strings._map.get(lexeme.orth) if ptr == NULL: continue py_str = self.strings[lexeme.orth] if self.strings[py_str] != lexeme.orth: raise ValueError(Errors.E086.format(string=py_str, orth_id=lexeme.orth, hash_id=self.strings[py_str])) self._by_orth.set(lexeme.orth, lexeme) self.length += 1 def _reset_cache(self, keys, strings): # I'm not sure this made sense. Disable it for now. raise NotImplementedError def pickle_vocab(vocab): sstore = vocab.strings vectors = vocab.vectors morph = vocab.morphology length = vocab.length data_dir = vocab.data_dir lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters) lexemes_data = vocab.lexemes_to_bytes() return (unpickle_vocab, (sstore, vectors, morph, data_dir, lex_attr_getters, lexemes_data, length)) def unpickle_vocab(sstore, vectors, morphology, data_dir, lex_attr_getters, bytes lexemes_data, int length): cdef Vocab vocab = Vocab() vocab.length = length vocab.vectors = vectors vocab.strings = sstore vocab.morphology = morphology vocab.data_dir = data_dir vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters) vocab.lexemes_from_bytes(lexemes_data) vocab.length = length return vocab copy_reg.pickle(Vocab, pickle_vocab, unpickle_vocab)