# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True from __future__ import print_function from cymem.cymem cimport Pool cimport numpy as np from itertools import islice from libcpp.vector cimport vector from libc.string cimport memset from libc.stdlib cimport calloc, free import random from typing import Optional import srsly from thinc.api import set_dropout_rate import numpy.random import numpy import warnings from ._parser_internals.stateclass cimport StateClass from ..ml.parser_model cimport alloc_activations, free_activations from ..ml.parser_model cimport predict_states, arg_max_if_valid from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ..ml.parser_model cimport get_c_weights, get_c_sizes from ..tokens.doc cimport Doc from .trainable_pipe import TrainablePipe from ..training import validate_examples, validate_get_examples from ..errors import Errors, Warnings from .. import util cdef class Parser(TrainablePipe): """ Base class of the DependencyParser and EntityRecognizer. """ def __init__( self, Vocab vocab, model, name="base_parser", moves=None, *, update_with_oracle_cut_size, multitasks=tuple(), min_action_freq, learn_tokens, ): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. **cfg: Configuration parameters. Set to the `.cfg` attribute. If it doesn't include a value for 'moves', a new instance is created with `self.TransitionSystem()`. This defines how the parse-state is created, updated and evaluated. """ self.vocab = vocab self.name = name cfg = { "moves": moves, "update_with_oracle_cut_size": update_with_oracle_cut_size, "multitasks": list(multitasks), "min_action_freq": min_action_freq, "learn_tokens": learn_tokens } if moves is None: # defined by EntityRecognizer as a BiluoPushDown moves = self.TransitionSystem(self.vocab.strings) self.moves = moves self.model = model if self.moves.n_moves != 0: self.set_output(self.moves.n_moves) self.cfg = cfg self._multitasks = [] for multitask in cfg["multitasks"]: self.add_multitask_objective(multitask) self._rehearsal_model = None self._added_strings = set() def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" args = (self.vocab, self.model, self.name, self.moves) return args, self.cfg @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def label_data(self): return self.moves.labels @property def tok2vec(self): """Return the embedding and convolutional layer of the model.""" return self.model.get_ref("tok2vec") @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() self.add_string(label) return 1 return 0 def _resize(self): self.model.attrs["resize_output"](self.model, self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.attrs["resize_output"]( self._rehearsal_model, self.moves.n_moves ) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): """Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. """ pass def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def __call__(self, Doc doc): """Apply the parser or entity recognizer, setting the annotations onto the `Doc` object. doc (Doc): The document to be processed. """ states = self.predict([doc]) self.set_annotations([doc], states) return doc def pipe(self, docs, *, int batch_size=256): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. YIELDS (Doc): Documents, in order. """ cdef Doc doc for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) by_length = sorted(batch, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch) self.set_annotations(subbatch, parse_states) yield from batch_in_order def predict(self, docs): if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) self._resize() return result return self.greedy_parse(docs, drop=0.0) def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() model = self.model.predict(docs) weights = get_c_weights(model) for state in batch: if not state.is_final(): states.push_back(state.c) sizes = get_c_sizes(model, states.size()) with nogil: self._parseC(&states[0], weights, sizes) model.clear_memory() del model return batch cdef void _parseC(self, StateC** states, WeightsC weights, SizesC sizes) nogil: cdef int i, j cdef vector[StateC*] unfinished cdef ActivationsC activations = alloc_activations(sizes) while sizes.states >= 1: predict_states(&activations, states, &weights, sizes) # Validate actions, argmax, take action. self.c_transition_batch(states, activations.scores, sizes.classes, sizes.states) for i in range(sizes.states): if not states[i].is_final(): unfinished.push_back(states[i]) for i in range(unfinished.size()): states[i] = unfinished[i] sizes.states = unfinished.size() unfinished.clear() free_activations(&activations) def set_annotations(self, docs, states): cdef StateClass state cdef Doc doc for i, (state, doc) in enumerate(zip(states, docs)): self.moves.finalize_state(state.c) for j in range(doc.length): doc.c[j] = state.c._sent[j] self.moves.finalize_doc(doc) for hook in self.postprocesses: hook(doc) def transition_states(self, states, float[:, ::1] scores): cdef StateClass state cdef float* c_scores = &scores[0, 0] cdef vector[StateC*] c_states for state in states: c_states.push_back(state.c) self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0]) return [state for state in states if not state.c.is_final()] cdef void c_transition_batch(self, StateC** states, const float* scores, int nr_class, int batch_size) nogil: # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc with gil: assert self.moves.n_moves > 0, Errors.E924.format(name=self.name) is_valid = calloc(self.moves.n_moves, sizeof(int)) cdef int i, guess cdef Transition action for i in range(batch_size): self.moves.set_valid(is_valid, states[i]) guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class) if guess == -1: # This shouldn't happen, but it's hard to raise an error here, # and we don't want to infinite loop. So, force to end state. states[i].force_final() else: action = self.moves.c[guess] action.do(states[i], action.label) states[i].push_hist(guess) free(is_valid) def update(self, examples, *, drop=0., set_annotations=False, sgd=None, losses=None): cdef StateClass state if losses is None: losses = {} losses.setdefault(self.name, 0.) validate_examples(examples, "Parser.update") for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) n_examples = len([eg for eg in examples if self.moves.has_gold(eg)]) if n_examples == 0: return losses set_dropout_rate(self.model, drop) # Prepare the stepwise model, and get the callback for finishing the batch model, backprop_tok2vec = self.model.begin_update( [eg.predicted for eg in examples]) max_moves = self.cfg["update_with_oracle_cut_size"] if max_moves >= 1: # Chop sequences into lengths of this many words, to make the # batch uniform length. max_moves = int(random.uniform(max_moves // 2, max_moves * 2)) states, golds, _ = self._init_gold_batch( examples, max_length=max_moves ) else: states, golds, _ = self.moves.init_gold_batch(examples) if not states: return losses all_states = list(states) states_golds = list(zip(states, golds)) n_moves = 0 while states_golds: states, golds = zip(*states_golds) scores, backprop = model.begin_update(states) d_scores = self.get_batch_loss(states, golds, scores, losses) # Note that the gradient isn't normalized by the batch size # here, because our "samples" are really the states...But we # can't normalize by the number of states either, as then we'd # be getting smaller gradients for states in long sequences. backprop(d_scores) # Follow the predicted action self.transition_states(states, scores) states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()] if max_moves >= 1 and n_moves >= max_moves: break n_moves += 1 backprop_tok2vec(golds) if sgd not in (None, False): self.finish_update(sgd) if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, all_states) # Ugh, this is annoying. If we're working on GPU, we want to free the # memory ASAP. It seems that Python doesn't necessarily get around to # removing these in time if we don't explicitly delete? It's confusing. del backprop del backprop_tok2vec model.clear_memory() del model return losses def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" if losses is None: losses = {} for multitask in self._multitasks: if hasattr(multitask, 'rehearse'): multitask.rehearse(examples, losses=losses, sgd=sgd) if self._rehearsal_model is None: return None losses.setdefault(self.name, 0.) validate_examples(examples, "Parser.rehearse") docs = [eg.predicted for eg in examples] states = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() # Prepare the stepwise model, and get the callback for finishing the batch set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self.model, 0.0) tutor, _ = self._rehearsal_model.begin_update(docs) model, backprop_tok2vec = self.model.begin_update(docs) n_scores = 0. loss = 0. while states: targets, _ = tutor.begin_update(states) guesses, backprop = model.begin_update(states) d_scores = (guesses - targets) / targets.shape[0] # If all weights for an output are 0 in the original model, don't # supervise that output. This allows us to add classes. loss += (d_scores**2).sum() backprop(d_scores) # Follow the predicted action self.transition_states(states, guesses) states = [state for state in states if not state.is_final()] n_scores += d_scores.size # Do the backprop backprop_tok2vec(docs) if sgd is not None: self.finish_update(sgd) losses[self.name] += loss / n_scores del backprop del backprop_tok2vec model.clear_memory() tutor.clear_memory() del model del tutor return losses def get_batch_loss(self, states, golds, float[:, ::1] scores, losses): cdef StateClass state cdef Pool mem = Pool() cdef int i # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.moves.n_moves > 0, Errors.E924.format(name=self.name) is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data unseen_classes = self.model.attrs["unseen_classes"] for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state, gold) for j in range(self.moves.n_moves): if costs[j] <= 0.0 and j in unseen_classes: unseen_classes.remove(j) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] # Note that we don't normalize this. See comment in update() for why. if losses is not None: losses.setdefault(self.name, 0.) losses[self.name] += (d_scores**2).sum() return d_scores def set_output(self, nO): self.model.attrs["resize_output"](self.model, nO) def initialize(self, get_examples, nlp=None, labels=None): validate_get_examples(get_examples, "Parser.initialize") lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {}) if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS: langs = ", ".join(util.LEXEME_NORM_LANGS) util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs)) if labels is not None: actions = dict(labels) else: actions = self.moves.get_actions( examples=get_examples(), min_freq=self.cfg['min_action_freq'], learn_tokens=self.cfg["learn_tokens"] ) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) # make sure we resize so we have an appropriate upper layer self._resize() doc_sample = [] if nlp is not None: for name, component in nlp.pipeline: if component is self: break # non-trainable components may have a pipe() implementation that refers to dummy # predict and set_annotations methods if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample, batch_size=8)) else: doc_sample = [component(doc) for doc in doc_sample] if not doc_sample: for example in islice(get_examples(), 10): doc_sample.append(example.predicted) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(doc_sample) if nlp is not None: self.init_multitask_objectives(get_examples, nlp.pipeline) def to_disk(self, path, exclude=tuple()): serializers = { 'model': lambda p: (self.model.to_disk(p) if self.model is not True else True), 'strings.json': lambda p: srsly.write_json(p, self._added_strings), 'moves': lambda p: self.moves.to_disk(p, exclude=["strings"]), 'cfg': lambda p: srsly.write_json(p, self.cfg) } util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple()): deserializers = { 'strings.json': lambda p: [self.add_string(s) for s in srsly.read_json(p)], 'moves': lambda p: self.moves.from_disk(p, exclude=["strings"]), 'cfg': lambda p: self.cfg.update(srsly.read_json(p)), 'model': lambda p: None, } util.from_disk(path, deserializers, exclude) if 'model' not in exclude: path = util.ensure_path(path) with (path / 'model').open('rb') as file_: bytes_data = file_.read() try: self._resize() self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) from None return self def to_bytes(self, exclude=tuple()): serializers = { "model": lambda: (self.model.to_bytes()), "strings.json": lambda: srsly.json_dumps(sorted(self._added_strings)), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple()): deserializers = { "strings.json": lambda b: [self.add_string(s) for s in srsly.json_loads(b)], "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None, } msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) from None return self def _init_gold_batch(self, examples, max_length): """Make a square batch, of length equal to the shortest transition sequence or a cap. A long doc will get multiple states. Let's say we have a doc of length 2*N, where N is the shortest doc. We'll make two states, one representing long_doc[:N], and another representing long_doc[N:].""" cdef: StateClass start_state StateClass state Transition action all_states = self.moves.init_batch([eg.predicted for eg in examples]) states = [] golds = [] to_cut = [] for state, eg in zip(all_states, examples): if self.moves.has_gold(eg) and not state.is_final(): gold = self.moves.init_gold(state, eg) if len(eg.x) < max_length: states.append(state) golds.append(gold) else: oracle_actions = self.moves.get_oracle_sequence_from_state( state.copy(), gold) to_cut.append((eg, state, gold, oracle_actions)) if not to_cut: return states, golds, 0 cdef int clas for eg, state, gold, oracle_actions in to_cut: for i in range(0, len(oracle_actions), max_length): start_state = state.copy() for clas in oracle_actions[i:i+max_length]: action = self.moves.c[clas] action.do(state.c, action.label) state.c.push_hist(action.clas) if state.is_final(): break if self.moves.has_gold(eg, start_state.B(0), state.B(0)): states.append(start_state) golds.append(gold) if state.is_final(): break return states, golds, max_length