import pytest from spacy import registry from spacy.lang.en import English from spacy.lang.de import German from spacy.pipeline.ner import DEFAULT_NER_MODEL from spacy.pipeline import EntityRuler, EntityRecognizer from spacy.matcher import Matcher, PhraseMatcher from spacy.tokens import Doc from spacy.vocab import Vocab from spacy.attrs import ENT_IOB, ENT_TYPE from spacy.compat import pickle from spacy import displacy from spacy.vectors import Vectors import numpy def test_issue3002(): """Test that the tokenizer doesn't hang on a long list of dots""" nlp = German() doc = nlp( "880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl" ) assert len(doc) == 5 def test_issue3009(en_vocab): """Test problem with matcher quantifiers""" patterns = [ [{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}], [ {"ORTH": "has"}, {"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}, ], [ {"ORTH": "has"}, {"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}, ], ] words = ["also", "has", "to", "do", "with"] tags = ["RB", "VBZ", "TO", "VB", "IN"] pos = ["ADV", "VERB", "ADP", "VERB", "ADP"] doc = Doc(en_vocab, words=words, tags=tags, pos=pos) matcher = Matcher(en_vocab) for i, pattern in enumerate(patterns): matcher.add(str(i), [pattern]) matches = matcher(doc) assert matches def test_issue3012(en_vocab): """Test that the is_tagged attribute doesn't get overwritten when we from_array without tag information.""" words = ["This", "is", "10", "%", "."] tags = ["DT", "VBZ", "CD", "NN", "."] pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"] ents = ["O", "O", "B-PERCENT", "I-PERCENT", "O"] doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents) assert doc.has_annotation("TAG") expected = ("10", "NUM", "CD", "PERCENT") assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected header = [ENT_IOB, ENT_TYPE] ent_array = doc.to_array(header) doc.from_array(header, ent_array) assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected # Serializing then deserializing doc_bytes = doc.to_bytes() doc2 = Doc(en_vocab).from_bytes(doc_bytes) assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected def test_issue3199(): """Test that Span.noun_chunks works correctly if no noun chunks iterator is available. To make this test future-proof, we're constructing a Doc with a new Vocab here and a parse tree to make sure the noun chunks run. """ words = ["This", "is", "a", "sentence"] doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words)) with pytest.raises(NotImplementedError): list(doc[0:3].noun_chunks) def test_issue3209(): """Test issue that occurred in spaCy nightly where NER labels were being mapped to classes incorrectly after loading the model, when the labels were added using ner.add_label(). """ nlp = English() ner = nlp.add_pipe("ner") ner.add_label("ANIMAL") nlp.initialize() move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"] assert ner.move_names == move_names nlp2 = English() ner2 = nlp2.add_pipe("ner") model = ner2.model model.attrs["resize_output"](model, ner.moves.n_moves) nlp2.from_bytes(nlp.to_bytes()) assert ner2.move_names == move_names def test_issue3248_1(): """Test that the PhraseMatcher correctly reports its number of rules, not total number of patterns.""" nlp = English() matcher = PhraseMatcher(nlp.vocab) matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) matcher.add("TEST2", [nlp("d")]) assert len(matcher) == 2 def test_issue3248_2(): """Test that the PhraseMatcher can be pickled correctly.""" nlp = English() matcher = PhraseMatcher(nlp.vocab) matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) matcher.add("TEST2", [nlp("d")]) data = pickle.dumps(matcher) new_matcher = pickle.loads(data) assert len(new_matcher) == len(matcher) def test_issue3277(es_tokenizer): """Test that hyphens are split correctly as prefixes.""" doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.") assert len(doc) == 14 assert doc[0].text == "\u2014" assert doc[5].text == "\u2013" assert doc[9].text == "\u2013" def test_issue3288(en_vocab): """Test that retokenization works correctly via displaCy when punctuation is merged onto the preceeding token and tensor is resized.""" words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"] heads = [1, 1, 1, 4, 4, 6, 4, 4] deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"] doc = Doc(en_vocab, words=words, heads=heads, deps=deps) doc.tensor = numpy.zeros((len(words), 96), dtype="float32") displacy.render(doc) def test_issue3289(): """Test that Language.to_bytes handles serializing a pipeline component with an uninitialized model.""" nlp = English() nlp.add_pipe("textcat") bytes_data = nlp.to_bytes() new_nlp = English() new_nlp.add_pipe("textcat") new_nlp.from_bytes(bytes_data) def test_issue3328(en_vocab): doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"]) matcher = Matcher(en_vocab) patterns = [ [{"LOWER": {"IN": ["hello", "how"]}}], [{"LOWER": {"IN": ["you", "doing"]}}], ] matcher.add("TEST", patterns) matches = matcher(doc) assert len(matches) == 4 matched_texts = [doc[start:end].text for _, start, end in matches] assert matched_texts == ["Hello", "how", "you", "doing"] def test_issue3331(en_vocab): """Test that duplicate patterns for different rules result in multiple matches, one per rule. """ matcher = PhraseMatcher(en_vocab) matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])]) matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])]) doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"]) matches = matcher(doc) assert len(matches) == 2 match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]] assert sorted(match_ids) == ["A", "B"] def test_issue3345(): """Test case where preset entity crosses sentence boundary.""" nlp = English() doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"]) doc[4].is_sent_start = True ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}]) cfg = {"model": DEFAULT_NER_MODEL} model = registry.resolve(cfg, validate=True)["model"] ner = EntityRecognizer(doc.vocab, model) # Add the OUT action. I wouldn't have thought this would be necessary... ner.moves.add_action(5, "") ner.add_label("GPE") doc = ruler(doc) # Get into the state just before "New" state = ner.moves.init_batch([doc])[0] ner.moves.apply_transition(state, "O") ner.moves.apply_transition(state, "O") ner.moves.apply_transition(state, "O") # Check that B-GPE is valid. assert ner.moves.is_valid(state, "B-GPE") def test_issue3412(): data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f") vectors = Vectors(data=data, keys=["A", "B", "C"]) keys, best_rows, scores = vectors.most_similar( numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f") ) assert best_rows[0] == 2 @pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot") def test_issue3449(): nlp = English() nlp.add_pipe("sentencizer") text1 = "He gave the ball to I. Do you want to go to the movies with I?" text2 = "He gave the ball to I. Do you want to go to the movies with I?" text3 = "He gave the ball to I.\nDo you want to go to the movies with I?" t1 = nlp(text1) t2 = nlp(text2) t3 = nlp(text3) assert t1[5].text == "I" assert t2[5].text == "I" assert t3[5].text == "I" def test_issue3456(): # this crashed because of a padding error in layer.ops.unflatten in thinc nlp = English() tagger = nlp.add_pipe("tagger") tagger.add_label("A") nlp.initialize() list(nlp.pipe(["hi", ""])) def test_issue3468(): """Test that sentence boundaries are set correctly so Doc.has_annotation("SENT_START") can be restored after serialization.""" nlp = English() nlp.add_pipe("sentencizer") doc = nlp("Hello world") assert doc[0].is_sent_start assert doc.has_annotation("SENT_START") assert len(list(doc.sents)) == 1 doc_bytes = doc.to_bytes() new_doc = Doc(nlp.vocab).from_bytes(doc_bytes) assert new_doc[0].is_sent_start assert new_doc.has_annotation("SENT_START") assert len(list(new_doc.sents)) == 1