# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True from __future__ import print_function from cymem.cymem cimport Pool cimport numpy as np from itertools import islice from libcpp.vector cimport vector from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free import random import srsly from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps from thinc.extra.search cimport Beam import numpy.random import numpy import warnings from ._parser_internals.stateclass cimport StateClass from ..ml.parser_model cimport alloc_activations, free_activations from ..ml.parser_model cimport predict_states, arg_max_if_valid from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ..ml.parser_model cimport get_c_weights, get_c_sizes from ..tokens.doc cimport Doc from .trainable_pipe import TrainablePipe from ._parser_internals cimport _beam_utils from ._parser_internals import _beam_utils from ..training import validate_examples, validate_get_examples from ..errors import Errors, Warnings from .. import util NUMPY_OPS = NumpyOps() cdef class Parser(TrainablePipe): """ Base class of the DependencyParser and EntityRecognizer. """ def __init__( self, Vocab vocab, model, name="base_parser", moves=None, *, update_with_oracle_cut_size, min_action_freq, learn_tokens, beam_width=1, beam_density=0.0, beam_update_prob=0.0, multitasks=tuple(), incorrect_spans_key=None, scorer=None, ): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. model (Model): The model for the transition-based parser. The model needs to have a specific substructure of named components --- see the spacy.ml.tb_framework.TransitionModel for details. name (str): The name of the pipeline component moves (Optional[TransitionSystem]): This defines how the parse-state is created, updated and evaluated. If 'moves' is None, a new instance is created with `self.TransitionSystem()`. Defaults to `None`. update_with_oracle_cut_size (int): During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. 100 is a good default. min_action_freq (int): The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. learn_tokens (bool): Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. beam_width (int): The number of candidate analyses to maintain. beam_density (float): The minimum ratio between the scores of the first and last candidates in the beam. This allows the parser to avoid exploring candidates that are too far behind. This is mostly intended to improve efficiency, but it can also improve accuracy as deeper search is not always better. beam_update_prob (float): The chance of making a beam update, instead of a greedy update. Greedy updates are an approximation for the beam updates, and are faster to compute. multitasks: additional multi-tasking components. Experimental. incorrect_spans_key (Optional[str]): Identifies spans that are known to be incorrect entity annotations. The incorrect entity annotations can be stored in the span group, under this key. scorer (Optional[Callable]): The scoring method. Defaults to None. """ self.vocab = vocab self.name = name cfg = { "moves": moves, "update_with_oracle_cut_size": update_with_oracle_cut_size, "multitasks": list(multitasks), "min_action_freq": min_action_freq, "learn_tokens": learn_tokens, "beam_width": beam_width, "beam_density": beam_density, "beam_update_prob": beam_update_prob, "incorrect_spans_key": incorrect_spans_key } if moves is None: # EntityRecognizer -> BiluoPushDown # DependencyParser -> ArcEager moves = self.TransitionSystem( self.vocab.strings, incorrect_spans_key=incorrect_spans_key ) self.moves = moves self.model = model if self.moves.n_moves != 0: self.set_output(self.moves.n_moves) self.cfg = cfg self._multitasks = [] for multitask in cfg["multitasks"]: self.add_multitask_objective(multitask) self._rehearsal_model = None self.scorer = scorer self._cpu_ops = get_ops("cpu") if isinstance(self.model.ops, CupyOps) else self.model.ops def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" args = (self.vocab, self.model, self.name, self.moves) return args, self.cfg @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def label_data(self): return self.moves.labels @property def tok2vec(self): """Return the embedding and convolutional layer of the model.""" return self.model.get_ref("tok2vec") @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] @property def incorrect_spans_key(self): return self.cfg["incorrect_spans_key"] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() self.vocab.strings.add(label) return 1 return 0 def _ensure_labels_are_added(self, docs): """Ensure that all labels for a batch of docs are added.""" resized = False labels = set() for doc in docs: labels.update(self.moves.get_doc_labels(doc)) for label in labels: for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: self.vocab.strings.add(label) resized = True if resized: self._resize() return 1 return 0 def _resize(self): self.model.attrs["resize_output"](self.model, self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.attrs["resize_output"]( self._rehearsal_model, self.moves.n_moves ) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): """Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. """ pass def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def pipe(self, docs, *, int batch_size=256): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. error_handler (Callable[[str, List[Doc], Exception], Any]): Function that deals with a failing batch of documents. The default function just reraises the exception. YIELDS (Doc): Documents, in order. """ cdef Doc doc error_handler = self.get_error_handler() for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) try: by_length = sorted(batch, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch) self.set_annotations(subbatch, parse_states) yield from batch_in_order except Exception as e: error_handler(self.name, self, batch_in_order, e) def predict(self, docs): if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) return result if self.cfg["beam_width"] == 1: return self.greedy_parse(docs, drop=0.0) else: return self.beam_parse( docs, drop=0.0, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"] ) def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state cdef CBlas cblas = self._cpu_ops.cblas() self._ensure_labels_are_added(docs) set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) model = self.model.predict(docs) weights = get_c_weights(model) for state in batch: if not state.is_final(): states.push_back(state.c) sizes = get_c_sizes(model, states.size()) with nogil: self._parseC(cblas, &states[0], weights, sizes) model.clear_memory() del model return batch def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.): cdef Beam beam cdef Doc doc self._ensure_labels_are_added(docs) batch = _beam_utils.BeamBatch( self.moves, self.moves.init_batch(docs), None, beam_width, density=beam_density ) model = self.model.predict(docs) while not batch.is_done: states = batch.get_unfinished_states() if not states: break scores = model.predict(states) batch.advance(scores) model.clear_memory() del model return list(batch) cdef void _parseC(self, CBlas cblas, StateC** states, WeightsC weights, SizesC sizes) nogil: cdef int i, j cdef vector[StateC*] unfinished cdef ActivationsC activations = alloc_activations(sizes) while sizes.states >= 1: predict_states(cblas, &activations, states, &weights, sizes) # Validate actions, argmax, take action. self.c_transition_batch(states, activations.scores, sizes.classes, sizes.states) for i in range(sizes.states): if not states[i].is_final(): unfinished.push_back(states[i]) for i in range(unfinished.size()): states[i] = unfinished[i] sizes.states = unfinished.size() unfinished.clear() free_activations(&activations) def set_annotations(self, docs, states_or_beams): cdef StateClass state cdef Beam beam cdef Doc doc states = _beam_utils.collect_states(states_or_beams, docs) for i, (state, doc) in enumerate(zip(states, docs)): self.moves.set_annotations(state, doc) for hook in self.postprocesses: hook(doc) def transition_states(self, states, float[:, ::1] scores): cdef StateClass state cdef float* c_scores = &scores[0, 0] cdef vector[StateC*] c_states for state in states: c_states.push_back(state.c) self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0]) return [state for state in states if not state.c.is_final()] cdef void c_transition_batch(self, StateC** states, const float* scores, int nr_class, int batch_size) nogil: # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc with gil: assert self.moves.n_moves > 0, Errors.E924.format(name=self.name) is_valid = calloc(self.moves.n_moves, sizeof(int)) cdef int i, guess cdef Transition action for i in range(batch_size): self.moves.set_valid(is_valid, states[i]) guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class) if guess == -1: # This shouldn't happen, but it's hard to raise an error here, # and we don't want to infinite loop. So, force to end state. states[i].force_final() else: action = self.moves.c[guess] action.do(states[i], action.label) free(is_valid) def update(self, examples, *, drop=0., sgd=None, losses=None): cdef StateClass state if losses is None: losses = {} losses.setdefault(self.name, 0.) validate_examples(examples, "Parser.update") self._ensure_labels_are_added( [eg.x for eg in examples] + [eg.y for eg in examples] ) for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) n_examples = len([eg for eg in examples if self.moves.has_gold(eg)]) if n_examples == 0: return losses set_dropout_rate(self.model, drop) # The probability we use beam update, instead of falling back to # a greedy update beam_update_prob = self.cfg["beam_update_prob"] if self.cfg['beam_width'] >= 2 and numpy.random.random() < beam_update_prob: return self.update_beam( examples, beam_width=self.cfg["beam_width"], sgd=sgd, losses=losses, beam_density=self.cfg["beam_density"] ) max_moves = self.cfg["update_with_oracle_cut_size"] if max_moves >= 1: # Chop sequences into lengths of this many words, to make the # batch uniform length. max_moves = int(random.uniform(max_moves // 2, max_moves * 2)) states, golds, _ = self._init_gold_batch( examples, max_length=max_moves ) else: states, golds, _ = self.moves.init_gold_batch(examples) if not states: return losses model, backprop_tok2vec = self.model.begin_update([eg.x for eg in examples]) all_states = list(states) states_golds = list(zip(states, golds)) n_moves = 0 while states_golds: states, golds = zip(*states_golds) scores, backprop = model.begin_update(states) d_scores = self.get_batch_loss(states, golds, scores, losses) # Note that the gradient isn't normalized by the batch size # here, because our "samples" are really the states...But we # can't normalize by the number of states either, as then we'd # be getting smaller gradients for states in long sequences. backprop(d_scores) # Follow the predicted action self.transition_states(states, scores) states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()] if max_moves >= 1 and n_moves >= max_moves: break n_moves += 1 backprop_tok2vec(golds) if sgd not in (None, False): self.finish_update(sgd) # Ugh, this is annoying. If we're working on GPU, we want to free the # memory ASAP. It seems that Python doesn't necessarily get around to # removing these in time if we don't explicitly delete? It's confusing. del backprop del backprop_tok2vec model.clear_memory() del model return losses def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" if losses is None: losses = {} for multitask in self._multitasks: if hasattr(multitask, 'rehearse'): multitask.rehearse(examples, losses=losses, sgd=sgd) if self._rehearsal_model is None: return None losses.setdefault(self.name, 0.) validate_examples(examples, "Parser.rehearse") docs = [eg.predicted for eg in examples] states = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() # Prepare the stepwise model, and get the callback for finishing the batch set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self.model, 0.0) tutor, _ = self._rehearsal_model.begin_update(docs) model, backprop_tok2vec = self.model.begin_update(docs) n_scores = 0. loss = 0. while states: targets, _ = tutor.begin_update(states) guesses, backprop = model.begin_update(states) d_scores = (guesses - targets) / targets.shape[0] # If all weights for an output are 0 in the original model, don't # supervise that output. This allows us to add classes. loss += (d_scores**2).sum() backprop(d_scores) # Follow the predicted action self.transition_states(states, guesses) states = [state for state in states if not state.is_final()] n_scores += d_scores.size # Do the backprop backprop_tok2vec(docs) if sgd is not None: self.finish_update(sgd) losses[self.name] += loss / n_scores del backprop del backprop_tok2vec model.clear_memory() tutor.clear_memory() del model del tutor return losses def update_beam(self, examples, *, beam_width, drop=0., sgd=None, losses=None, beam_density=0.0): states, golds, _ = self.moves.init_gold_batch(examples) if not states: return losses # Prepare the stepwise model, and get the callback for finishing the batch model, backprop_tok2vec = self.model.begin_update( [eg.predicted for eg in examples]) loss = _beam_utils.update_beam( self.moves, states, golds, model, beam_width, beam_density=beam_density, ) losses[self.name] += loss backprop_tok2vec(golds) if sgd is not None: self.finish_update(sgd) def get_batch_loss(self, states, golds, float[:, ::1] scores, losses): cdef StateClass state cdef Pool mem = Pool() cdef int i # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.moves.n_moves > 0, Errors.E924.format(name=self.name) is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data unseen_classes = self.model.attrs["unseen_classes"] for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state.c, gold) for j in range(self.moves.n_moves): if costs[j] <= 0.0 and j in unseen_classes: unseen_classes.remove(j) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] # Note that we don't normalize this. See comment in update() for why. if losses is not None: losses.setdefault(self.name, 0.) losses[self.name] += (d_scores**2).sum() return d_scores def set_output(self, nO): self.model.attrs["resize_output"](self.model, nO) def initialize(self, get_examples, nlp=None, labels=None): validate_get_examples(get_examples, "Parser.initialize") util.check_lexeme_norms(self.vocab, "parser or NER") if labels is not None: actions = dict(labels) else: actions = self.moves.get_actions( examples=get_examples(), min_freq=self.cfg['min_action_freq'], learn_tokens=self.cfg["learn_tokens"] ) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) # make sure we resize so we have an appropriate upper layer self._resize() doc_sample = [] if nlp is not None: for name, component in nlp.pipeline: if component is self: break # non-trainable components may have a pipe() implementation that refers to dummy # predict and set_annotations methods if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample, batch_size=8)) else: doc_sample = [component(doc) for doc in doc_sample] if not doc_sample: for example in islice(get_examples(), 10): doc_sample.append(example.predicted) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(doc_sample) if nlp is not None: self.init_multitask_objectives(get_examples, nlp.pipeline) def to_disk(self, path, exclude=tuple()): serializers = { "model": lambda p: (self.model.to_disk(p) if self.model is not True else True), "vocab": lambda p: self.vocab.to_disk(p, exclude=exclude), "moves": lambda p: self.moves.to_disk(p, exclude=["strings"]), "cfg": lambda p: srsly.write_json(p, self.cfg) } util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple()): deserializers = { "vocab": lambda p: self.vocab.from_disk(p, exclude=exclude), "moves": lambda p: self.moves.from_disk(p, exclude=["strings"]), "cfg": lambda p: self.cfg.update(srsly.read_json(p)), "model": lambda p: None, } util.from_disk(path, deserializers, exclude) if "model" not in exclude: path = util.ensure_path(path) with (path / "model").open("rb") as file_: bytes_data = file_.read() try: self._resize() self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) return self def to_bytes(self, exclude=tuple()): serializers = { "model": lambda: (self.model.to_bytes()), "vocab": lambda: self.vocab.to_bytes(exclude=exclude), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple()): deserializers = { "vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude), "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None, } msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) from None return self def _init_gold_batch(self, examples, max_length): """Make a square batch, of length equal to the shortest transition sequence or a cap. A long doc will get multiple states. Let's say we have a doc of length 2*N, where N is the shortest doc. We'll make two states, one representing long_doc[:N], and another representing long_doc[N:].""" cdef: StateClass start_state StateClass state Transition action all_states = self.moves.init_batch([eg.predicted for eg in examples]) states = [] golds = [] to_cut = [] for state, eg in zip(all_states, examples): if self.moves.has_gold(eg) and not state.is_final(): gold = self.moves.init_gold(state, eg) if len(eg.x) < max_length: states.append(state) golds.append(gold) else: oracle_actions = self.moves.get_oracle_sequence_from_state( state.copy(), gold) to_cut.append((eg, state, gold, oracle_actions)) if not to_cut: return states, golds, 0 cdef int clas for eg, state, gold, oracle_actions in to_cut: for i in range(0, len(oracle_actions), max_length): start_state = state.copy() for clas in oracle_actions[i:i+max_length]: action = self.moves.c[clas] action.do(state.c, action.label) if state.is_final(): break if self.moves.has_gold(eg, start_state.B(0), state.B(0)): states.append(start_state) golds.append(gold) if state.is_final(): break return states, golds, max_length @property def activations(self): # We currently do not have access to the state ids or probabilities # after parsing. TODO: the parser refactor does provide some history. return []