from copy import copy from ..tokens.doc cimport Doc from spacy.attrs import DEP, HEAD def ancestors(tokenid, heads): # returns all words going from the word up the path to the root # the path to root cannot be longer than the number of words in the sentence # this function ends after at most len(heads) steps # because it would otherwise loop indefinitely on cycles head = tokenid cnt = 0 while heads[head] != head and cnt < len(heads): head = heads[head] cnt += 1 yield head if head == None: break def contains_cycle(heads): # in an acyclic tree, the path from each word following # the head relation upwards always ends at the root node for tokenid in range(len(heads)): seen = set([tokenid]) for ancestor in ancestors(tokenid,heads): if ancestor in seen: return seen seen.add(ancestor) return None def is_nonproj_arc(tokenid, heads): # definition (e.g. Havelka 2007): an arc h -> d, h < d is non-projective # if there is a token k, h < k < d such that h is not # an ancestor of k. Same for h -> d, h > d head = heads[tokenid] if head == tokenid: # root arcs cannot be non-projective return False elif head == None: # unattached tokens cannot be non-projective return False start, end = (head+1, tokenid) if head < tokenid else (tokenid+1, head) for k in range(start,end): for ancestor in ancestors(k,heads): if ancestor == None: # for unattached tokens/subtrees break elif ancestor == head: # normal case: k dominated by h break else: # head not in ancestors: d -> h is non-projective return True return False def is_nonproj_tree(heads): # a tree is non-projective if at least one arc is non-projective return any( is_nonproj_arc(word,heads) for word in range(len(heads)) ) class PseudoProjectivity: # implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005 # for doing pseudo-projective parsing # implementation uses the HEAD decoration scheme delimiter = '||' @classmethod def decompose(cls, label): return label.partition(cls.delimiter)[::2] @classmethod def is_decorated(cls, label): return label.find(cls.delimiter) != -1 @classmethod def preprocess_training_data(cls, gold_tuples, label_freq_cutoff=30): preprocessed = [] freqs = {} for raw_text, sents in gold_tuples: prepro_sents = [] for (ids, words, tags, heads, labels, iob), ctnts in sents: proj_heads,deco_labels = cls.projectivize(heads,labels) # set the label to ROOT for each root dependent deco_labels = [ 'ROOT' if head == i else deco_labels[i] for i,head in enumerate(proj_heads) ] # count label frequencies if label_freq_cutoff > 0: for label in deco_labels: if cls.is_decorated(label): freqs[label] = freqs.get(label,0) + 1 prepro_sents.append(((ids,words,tags,proj_heads,deco_labels,iob), ctnts)) preprocessed.append((raw_text, prepro_sents)) if label_freq_cutoff > 0: return cls._filter_labels(preprocessed,label_freq_cutoff,freqs) return preprocessed @classmethod def projectivize(cls, heads, labels): # use the algorithm by Nivre & Nilsson 2005 # assumes heads to be a proper tree, i.e. connected and cycle-free # returns a new pair (heads,labels) which encode # a projective and decorated tree proj_heads = copy(heads) smallest_np_arc = cls._get_smallest_nonproj_arc(proj_heads) if smallest_np_arc == None: # this sentence is already projective return proj_heads, copy(labels) while smallest_np_arc != None: cls._lift(smallest_np_arc, proj_heads) smallest_np_arc = cls._get_smallest_nonproj_arc(proj_heads) deco_labels = cls._decorate(heads, proj_heads, labels) return proj_heads, deco_labels @classmethod def deprojectivize(cls, Doc tokens): # reattach arcs with decorated labels (following HEAD scheme) # for each decorated arc X||Y, search top-down, left-to-right, # breadth-first until hitting a Y then make this the new head #parse = tokens.to_array([HEAD, DEP]) for token in tokens: if cls.is_decorated(token.dep_): newlabel,headlabel = cls.decompose(token.dep_) newhead = cls._find_new_head(token,headlabel) token.head = newhead token.dep_ = newlabel # tokens.attach(token,newhead,newlabel) #parse[token.i,1] = tokens.vocab.strings[newlabel] #parse[token.i,0] = newhead.i - token.i #tokens.from_array([HEAD, DEP],parse) @classmethod def _decorate(cls, heads, proj_heads, labels): # uses decoration scheme HEAD from Nivre & Nilsson 2005 assert(len(heads) == len(proj_heads) == len(labels)) deco_labels = [] for tokenid,head in enumerate(heads): if head != proj_heads[tokenid]: deco_labels.append('%s%s%s' % (labels[tokenid],cls.delimiter,labels[head])) else: deco_labels.append(labels[tokenid]) return deco_labels @classmethod def _get_smallest_nonproj_arc(cls, heads): # return the smallest non-proj arc or None # where size is defined as the distance between dep and head # and ties are broken left to right smallest_size = float('inf') smallest_np_arc = None for tokenid,head in enumerate(heads): size = abs(tokenid-head) if size < smallest_size and is_nonproj_arc(tokenid,heads): smallest_size = size smallest_np_arc = tokenid return smallest_np_arc @classmethod def _lift(cls, tokenid, heads): # reattaches a word to it's grandfather head = heads[tokenid] ghead = heads[head] # attach to ghead if head isn't attached to root else attach to root heads[tokenid] = ghead if head != ghead else tokenid @classmethod def _find_new_head(cls, token, headlabel): # search through the tree starting from the head of the given token # returns the id of the first descendant with the given label # if there is none, return the current head (no change) queue = [token.head] while queue: next_queue = [] for qtoken in queue: for child in qtoken.children: if child.is_space: continue if child == token: continue if child.dep_ == headlabel: return child next_queue.append(child) queue = next_queue return token.head @classmethod def _filter_labels(cls, gold_tuples, cutoff, freqs): # throw away infrequent decorated labels # can't learn them reliably anyway and keeps label set smaller filtered = [] for raw_text, sents in gold_tuples: filtered_sents = [] for (ids, words, tags, heads, labels, iob), ctnts in sents: filtered_labels = [ cls.decompose(label)[0] if freqs.get(label,cutoff) < cutoff else label for label in labels ] filtered_sents.append(((ids,words,tags,heads,filtered_labels,iob), ctnts)) filtered.append((raw_text, filtered_sents)) return filtered