from typing import Any, Callable, Dict, Iterable, Iterator, cast import pytest from numpy.testing import assert_equal from thinc.types import Ragged from spacy import registry, util from spacy.attrs import ENT_KB_ID from spacy.compat import pickle from spacy.kb import Candidate, InMemoryLookupKB, KnowledgeBase from spacy.lang.en import English from spacy.ml import load_kb from spacy.ml.models.entity_linker import build_span_maker, get_candidates_v2 from spacy.pipeline import EntityLinker, TrainablePipe from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.scorer import Scorer from spacy.tests.util import make_tempdir from spacy.tokens import Doc, Span, SpanGroup from spacy.training import Example from spacy.util import ensure_path from spacy.vocab import Vocab @pytest.fixture def nlp(): return English() def assert_almost_equal(a, b): delta = 0.0001 assert a - delta <= b <= a + delta @pytest.mark.issue(4674) def test_issue4674(): """Test that setting entities with overlapping identifiers does not mess up IO""" nlp = English() kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) vector1 = [0.9, 1.1, 1.01] vector2 = [1.8, 2.25, 2.01] with pytest.warns(UserWarning): kb.set_entities( entity_list=["Q1", "Q1"], freq_list=[32, 111], vector_list=[vector1, vector2], ) assert kb.get_size_entities() == 1 # dumping to file & loading back in with make_tempdir() as d: dir_path = ensure_path(d) if not dir_path.exists(): dir_path.mkdir() file_path = dir_path / "kb" kb.to_disk(str(file_path)) kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) kb2.from_disk(str(file_path)) assert kb2.get_size_entities() == 1 @pytest.mark.issue(6730) def test_issue6730(en_vocab): """Ensure that the KB does not accept empty strings, but otherwise IO works fine.""" from spacy.kb.kb_in_memory import InMemoryLookupKB kb = InMemoryLookupKB(en_vocab, entity_vector_length=3) kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3]) with pytest.raises(ValueError): kb.add_alias(alias="", entities=["1"], probabilities=[0.4]) assert kb.contains_alias("") is False kb.add_alias(alias="x", entities=["1"], probabilities=[0.2]) kb.add_alias(alias="y", entities=["1"], probabilities=[0.1]) with make_tempdir() as tmp_dir: kb.to_disk(tmp_dir) kb.from_disk(tmp_dir) assert kb.get_size_aliases() == 2 assert set(kb.get_alias_strings()) == {"x", "y"} @pytest.mark.issue(7065) def test_issue7065(): text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival." nlp = English() nlp.add_pipe("sentencizer") ruler = nlp.add_pipe("entity_ruler") patterns = [ { "label": "THING", "pattern": [ {"LOWER": "symphony"}, {"LOWER": "no"}, {"LOWER": "."}, {"LOWER": "8"}, ], } ] ruler.add_patterns(patterns) doc = nlp(text) sentences = [s for s in doc.sents] assert len(sentences) == 2 sent0 = sentences[0] ent = doc.ents[0] assert ent.start < sent0.end < ent.end assert sentences.index(ent.sent) == 0 @pytest.mark.issue(7065) @pytest.mark.parametrize("entity_in_first_sentence", [True, False]) def test_sentence_crossing_ents(entity_in_first_sentence: bool): """Tests if NEL crashes if entities cross sentence boundaries and the first associated sentence doesn't have an entity. entity_in_prior_sentence (bool): Whether to include an entity in the first sentence associated with the sentence-crossing entity. """ # Test that the NEL doesn't crash when an entity crosses a sentence boundary nlp = English() vector_length = 3 text = "Mahler 's Symphony No. 8 was beautiful." entities = [(10, 24, "WORK")] links = {(10, 24): {"Q7304": 0.0, "Q270853": 1.0}} if entity_in_first_sentence: entities.append((0, 6, "PERSON")) links[(0, 6)] = {"Q7304": 1.0, "Q270853": 0.0} sent_starts = [1, -1, 0, 0, 0, 1, 0, 0, 0] doc = nlp(text) example = Example.from_dict( doc, {"entities": entities, "links": links, "sent_starts": sent_starts} ) train_examples = [example] def create_kb(vocab): # create artificial KB mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7]) mykb.add_alias( alias="No. 8", entities=["Q270853"], probabilities=[1.0], ) mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias( alias="Mahler", entities=["Q7304"], probabilities=[1.0], ) return mykb # Create the Entity Linker component and add it to the pipeline entity_linker = nlp.add_pipe("entity_linker", last=True) entity_linker.set_kb(create_kb) # type: ignore # train the NEL pipe optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): nlp.update(train_examples, sgd=optimizer) # This shouldn't crash. entity_linker.predict([example.reference]) # type: ignore def test_no_entities(): # Test that having no entities doesn't crash the model TRAIN_DATA = [ ( "The sky is blue.", { "sent_starts": [1, 0, 0, 0, 0], }, ) ] nlp = English() vector_length = 3 train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): # create artificial KB mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) return mykb # Create and train the Entity Linker entity_linker = nlp.add_pipe("entity_linker", last=True) entity_linker.set_kb(create_kb) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # adding additional components that are required for the entity_linker nlp.add_pipe("sentencizer", first=True) # this will run the pipeline on the examples and shouldn't crash nlp.evaluate(train_examples) def test_partial_links(): # Test that having some entities on the doc without gold links, doesn't crash TRAIN_DATA = [ ( "Russ Cochran his reprints include EC Comics.", { "links": {(0, 12): {"Q2146908": 1.0}}, "entities": [(0, 12, "PERSON")], "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0], }, ) ] nlp = English() vector_length = 3 train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): # create artificial KB mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) return mykb # Create and train the Entity Linker entity_linker = nlp.add_pipe("entity_linker", last=True) entity_linker.set_kb(create_kb) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # adding additional components that are required for the entity_linker nlp.add_pipe("sentencizer", first=True) patterns = [ {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}, {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}, ] ruler = nlp.add_pipe("entity_ruler", before="entity_linker") ruler.add_patterns(patterns) # this will run the pipeline on the examples and shouldn't crash results = nlp.evaluate(train_examples) assert "PERSON" in results["ents_per_type"] assert "PERSON" in results["nel_f_per_type"] assert "ORG" in results["ents_per_type"] assert "ORG" not in results["nel_f_per_type"] def test_kb_valid_entities(nlp): """Test the valid construction of a KB with 3 entities and two aliases""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # test the size of the corresponding KB assert mykb.get_size_entities() == 3 assert mykb.get_size_aliases() == 2 # test retrieval of the entity vectors assert mykb.get_vector("Q1") == [8, 4, 3] assert mykb.get_vector("Q2") == [2, 1, 0] assert mykb.get_vector("Q3") == [-1, -6, 5] # test retrieval of prior probabilities assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8) assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2) assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0) assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0) def test_kb_invalid_entities(nlp): """Test the invalid construction of a KB with an alias linked to a non-existing entity""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because one of the given IDs is not valid with pytest.raises(ValueError): mykb.add_alias( alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2] ) def test_kb_invalid_probabilities(nlp): """Test the invalid construction of a KB with wrong prior probabilities""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because the sum of the probabilities exceeds 1 with pytest.raises(ValueError): mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4]) def test_kb_invalid_combination(nlp): """Test the invalid construction of a KB with non-matching entity and probability lists""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because the entities and probabilities vectors are not of equal length with pytest.raises(ValueError): mykb.add_alias( alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1] ) def test_kb_invalid_entity_vector(nlp): """Test the invalid construction of a KB with non-matching entity vector lengths""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3]) # this should fail because the kb's expected entity vector length is 3 with pytest.raises(ValueError): mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) def test_kb_default(nlp): """Test that the default (empty) KB is loaded upon construction""" entity_linker = nlp.add_pipe("entity_linker", config={}) assert len(entity_linker.kb) == 0 with pytest.raises(ValueError, match="E139"): # this raises an error because the KB is empty entity_linker.validate_kb() assert entity_linker.kb.get_size_entities() == 0 assert entity_linker.kb.get_size_aliases() == 0 # 64 is the default value from pipeline.entity_linker assert entity_linker.kb.entity_vector_length == 64 def test_kb_custom_length(nlp): """Test that the default (empty) KB can be configured with a custom entity length""" entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 35}) assert len(entity_linker.kb) == 0 assert entity_linker.kb.get_size_entities() == 0 assert entity_linker.kb.get_size_aliases() == 0 assert entity_linker.kb.entity_vector_length == 35 def test_kb_initialize_empty(nlp): """Test that the EL can't initialize without examples""" entity_linker = nlp.add_pipe("entity_linker") with pytest.raises(TypeError): entity_linker.initialize(lambda: []) def test_kb_serialize(nlp): """Test serialization of the KB""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) with make_tempdir() as d: # normal read-write behaviour mykb.to_disk(d / "kb") mykb.from_disk(d / "kb") mykb.to_disk(d / "new" / "kb") mykb.from_disk(d / "new" / "kb") # allow overwriting an existing file mykb.to_disk(d / "kb") with pytest.raises(ValueError): # can not read from an unknown file mykb.from_disk(d / "unknown" / "kb") @pytest.mark.issue(9137) def test_kb_serialize_2(nlp): v = [5, 6, 7, 8] kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4) kb1.set_entities(["E1"], [1], [v]) assert kb1.get_vector("E1") == v with make_tempdir() as d: kb1.to_disk(d / "kb") kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4) kb2.from_disk(d / "kb") assert kb2.get_vector("E1") == v def test_kb_set_entities(nlp): """Test that set_entities entirely overwrites the previous set of entities""" v = [5, 6, 7, 8] v1 = [1, 1, 1, 0] v2 = [2, 2, 2, 3] kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4) kb1.set_entities(["E0"], [1], [v]) assert kb1.get_entity_strings() == ["E0"] kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2]) assert set(kb1.get_entity_strings()) == {"E1", "E2"} assert kb1.get_vector("E1") == v1 assert kb1.get_vector("E2") == v2 with make_tempdir() as d: kb1.to_disk(d / "kb") kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4) kb2.from_disk(d / "kb") assert set(kb2.get_entity_strings()) == {"E1", "E2"} assert kb2.get_vector("E1") == v1 assert kb2.get_vector("E2") == v2 def test_kb_serialize_vocab(nlp): """Test serialization of the KB and custom strings""" entity = "MyFunnyID" assert entity not in nlp.vocab.strings mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) assert not mykb.contains_entity(entity) mykb.add_entity(entity, freq=342, entity_vector=[3]) assert mykb.contains_entity(entity) assert entity in mykb.vocab.strings with make_tempdir() as d: # normal read-write behaviour mykb.to_disk(d / "kb") mykb_new = InMemoryLookupKB(Vocab(), entity_vector_length=1) mykb_new.from_disk(d / "kb") assert entity in mykb_new.vocab.strings def test_candidate_generation(nlp): """Test correct candidate generation""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) doc = nlp("douglas adam Adam shrubbery") douglas_ent = doc[0:1] adam_ent = doc[1:2] Adam_ent = doc[2:3] shrubbery_ent = doc[3:4] # adding entities mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # test the size of the relevant candidates adam_ent_cands = next( get_candidates_v2(mykb, SpanGroup(doc=doc, spans=[adam_ent])) )[0] assert len(adam_ent_cands) == 1 assert ( len(next(get_candidates_v2(mykb, SpanGroup(doc=doc, spans=[douglas_ent])))[0]) == 2 ) assert ( len(next(get_candidates_v2(mykb, SpanGroup(doc=doc, spans=[Adam_ent])))[0]) == 0 ) # default case sensitive assert ( len(next(get_candidates_v2(mykb, SpanGroup(doc=doc, spans=[shrubbery_ent])))[0]) == 0 ) # test the content of the candidates assert adam_ent_cands[0].entity_id_ == "Q2" assert adam_ent_cands[0].alias == "adam" assert_almost_equal(adam_ent_cands[0].entity_freq, 12) assert_almost_equal(adam_ent_cands[0].prior_prob, 0.9) def test_candidate_generation_multiple_docs(nlp): """Test correct candidate generation with multiple docs.""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) docs = [nlp("douglas adam Adam shrubbery"), nlp("shrubbery Adam douglas adam")] douglas_ents = [docs[0][0:1], docs[1][2:3]] adam_ents = [docs[0][1:2], docs[1][3:4]] Adam_ents = [docs[0][2:3], docs[1][1:2]] shrubbery_ents = [docs[0][3:4], docs[1][0:1]] # adding entities mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # test the size of the relevant candidates adam_ent_cands = list( get_candidates_v2( mykb, [ SpanGroup(doc=docs[0], spans=[adam_ents[0]]), SpanGroup(doc=docs[1], spans=[adam_ents[1]]), ], ) ) assert len(adam_ent_cands) == 2 assert ( len( list( get_candidates_v2( mykb, [ SpanGroup(doc=docs[0], spans=[douglas_ents[0]]), SpanGroup(doc=docs[1], spans=[douglas_ents[1]]), ], ) ) ) == 2 ) Adam_ent_cands = list( get_candidates_v2( mykb, [ SpanGroup(doc=docs[0], spans=[Adam_ents[0]]), SpanGroup(doc=docs[1], spans=[Adam_ents[1]]), ], ) ) assert len(Adam_ent_cands) == 2 assert ( len(Adam_ent_cands[0][0]) == 0 and len(Adam_ent_cands[1][0]) == 0 ) # default case sensitive shrubbery_ents_cands = list( get_candidates_v2( mykb, [ SpanGroup(doc=docs[0], spans=[shrubbery_ents[0]]), SpanGroup(doc=docs[1], spans=[shrubbery_ents[1]]), ], ) ) assert len(shrubbery_ents_cands) == 2 assert len(shrubbery_ents_cands[0][0]) == 0 and len(shrubbery_ents_cands[1][0]) == 0 # test the content of the candidates assert ( adam_ent_cands[0][0][0].entity_id_ == adam_ent_cands[1][0][0].entity_id_ == "Q2" ) assert adam_ent_cands[0][0][0].alias == adam_ent_cands[1][0][0].alias == "adam" assert_almost_equal(adam_ent_cands[0][0][0].entity_freq, 12) assert_almost_equal(adam_ent_cands[1][0][0].entity_freq, 12) assert_almost_equal(adam_ent_cands[0][0][0].prior_prob, 0.9) assert_almost_equal(adam_ent_cands[1][0][0].prior_prob, 0.9) def test_el_pipe_configuration(nlp): """Test correct candidate generation as part of the EL pipe""" nlp.add_pipe("sentencizer") pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]} ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns([pattern]) def create_kb(vocab): kb = InMemoryLookupKB(vocab, entity_vector_length=1) kb.add_entity(entity="Q2", freq=12, entity_vector=[2]) kb.add_entity(entity="Q3", freq=5, entity_vector=[3]) kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) return kb # run an EL pipe without a trained context encoder, to check the candidate generation step only entity_linker = nlp.add_pipe("entity_linker", config={"incl_context": False}) entity_linker.set_kb(create_kb) # With the default get_candidates function, matching is case-sensitive text = "Douglas and douglas are not the same." doc = nlp(text) assert doc[0].ent_kb_id_ == "NIL" assert doc[1].ent_kb_id_ == "" assert doc[2].ent_kb_id_ == "Q2" def get_lowercased_candidates(kb: InMemoryLookupKB, mentions: Iterator[SpanGroup]): for mentions_for_doc in mentions: yield [ kb._get_alias_candidates(ent_span.text.lower()) for ent_span in mentions_for_doc ] @registry.misc("spacy.LowercaseCandidateGenerator.v1") def create_candidates() -> Callable[ [InMemoryLookupKB, Iterator[SpanGroup]], Iterator[Iterable[Iterable[Candidate]]], ]: return get_lowercased_candidates # replace the pipe with a new one with with a different candidate generator entity_linker = nlp.replace_pipe( "entity_linker", "entity_linker", config={ "incl_context": False, "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"}, }, ) entity_linker.set_kb(create_kb) doc = nlp(text) assert doc[0].ent_kb_id_ == "Q2" assert doc[1].ent_kb_id_ == "" assert doc[2].ent_kb_id_ == "Q2" def test_nel_nsents(nlp): """Test that n_sents can be set through the configuration""" entity_linker = nlp.add_pipe("entity_linker", config={}) assert entity_linker.n_sents == 0 entity_linker = nlp.replace_pipe( "entity_linker", "entity_linker", config={"n_sents": 2} ) assert entity_linker.n_sents == 2 def test_vocab_serialization(nlp): """Test that string information is retained across storage""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1]) adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) candidates = mykb._get_alias_candidates("adam") assert len(candidates) == 1 assert candidates[0].entity_id == q2_hash assert candidates[0].entity_id_ == "Q2" assert candidates[0].alias == "adam" with make_tempdir() as d: mykb.to_disk(d / "kb") kb_new_vocab = InMemoryLookupKB(Vocab(), entity_vector_length=1) kb_new_vocab.from_disk(d / "kb") candidates = kb_new_vocab._get_alias_candidates("adam") assert len(candidates) == 1 assert candidates[0].entity_id == q2_hash assert candidates[0].entity_id_ == "Q2" assert candidates[0].alias == "adam" assert kb_new_vocab.get_vector("Q2") == [2] assert_almost_equal(kb_new_vocab.get_prior_prob("Q2", "douglas"), 0.4) def test_append_alias(nlp): """Test that we can append additional alias-entity pairs""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # test the size of the relevant candidates assert len(mykb._get_alias_candidates("douglas")) == 2 # append an alias mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2) # test the size of the relevant candidates has been incremented assert len(mykb._get_alias_candidates("douglas")) == 3 # append the same alias-entity pair again should not work (will throw a warning) with pytest.warns(UserWarning): mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3) # test the size of the relevant candidates remained unchanged assert len(mykb._get_alias_candidates("douglas")) == 3 @pytest.mark.filterwarnings("ignore:\\[W036") def test_append_invalid_alias(nlp): """Test that append an alias will throw an error if prior probs are exceeding 1""" mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # append an alias - should fail because the entities and probabilities vectors are not of equal length with pytest.raises(ValueError): mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2) @pytest.mark.filterwarnings("ignore:\\[W036") def test_preserving_links_asdoc(nlp): """Test that Span.as_doc preserves the existing entity links""" vector_length = 1 def create_kb(vocab): mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=8, entity_vector=[1]) # adding aliases mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7]) mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6]) return mykb # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained) nlp.add_pipe("sentencizer") patterns = [ {"label": "GPE", "pattern": "Boston"}, {"label": "GPE", "pattern": "Denver"}, ] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) config = {"incl_prior": False} entity_linker = nlp.add_pipe("entity_linker", config=config, last=True) entity_linker.set_kb(create_kb) nlp.initialize() assert entity_linker.model.get_dim("nO") == vector_length # test whether the entity links are preserved by the `as_doc()` function text = "She lives in Boston. He lives in Denver." doc = nlp(text) for ent in doc.ents: orig_text = ent.text orig_kb_id = ent.kb_id_ sent_doc = ent.sent.as_doc() for s_ent in sent_doc.ents: if s_ent.text == orig_text: assert s_ent.kb_id_ == orig_kb_id def test_preserving_links_ents(nlp): """Test that doc.ents preserves KB annotations""" text = "She lives in Boston. He lives in Denver." doc = nlp(text) assert len(list(doc.ents)) == 0 boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1") doc.ents = [boston_ent] assert len(list(doc.ents)) == 1 assert list(doc.ents)[0].label_ == "LOC" assert list(doc.ents)[0].kb_id_ == "Q1" def test_preserving_links_ents_2(nlp): """Test that doc.ents preserves KB annotations""" text = "She lives in Boston. He lives in Denver." doc = nlp(text) assert len(list(doc.ents)) == 0 loc = doc.vocab.strings.add("LOC") q1 = doc.vocab.strings.add("Q1") doc.ents = [(loc, q1, 3, 4)] assert len(list(doc.ents)) == 1 assert list(doc.ents)[0].label_ == "LOC" assert list(doc.ents)[0].kb_id_ == "Q1" # fmt: off TRAIN_DATA = [ ("Russ Cochran captured his first major title with his son as caddie.", {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}, "entities": [(0, 12, "PERSON")], "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}), ("Russ Cochran his reprints include EC Comics.", {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}, "entities": [(0, 12, "PERSON"), (34, 43, "ART")], "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}), ("Russ Cochran has been publishing comic art.", {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}, "entities": [(0, 12, "PERSON")], "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}), ("Russ Cochran was a member of University of Kentucky's golf team.", {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}, "entities": [(0, 12, "PERSON"), (43, 51, "LOC")], "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}), # having a blank instance shouldn't break things ("The weather is nice today.", {"links": {}, "entities": [], "sent_starts": [1, -1, 0, 0, 0, 0]}) ] GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"] # fmt: on def test_overfitting_IO_gold_entities(): # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly nlp = English() vector_length = 3 assert "Q2146908" not in nlp.vocab.strings # Convert the texts to docs to make sure we have doc.ents set for the training examples train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): # create artificial KB - assign same prior weight to the two russ cochran's # Q2146908 (Russ Cochran): American golfer # Q7381115 (Russ Cochran): publisher mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_alias( alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5], ) return mykb # Create the Entity Linker component and add it to the pipeline entity_linker = nlp.add_pipe( "entity_linker", last=True, config={"use_gold_ents": True} ) assert isinstance(entity_linker, EntityLinker) entity_linker.set_kb(create_kb) assert "Q2146908" in entity_linker.vocab.strings assert "Q2146908" in entity_linker.kb.vocab.strings # train the NEL pipe optimizer = nlp.initialize(get_examples=lambda: train_examples) assert entity_linker.model.get_dim("nO") == vector_length assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["entity_linker"] < 0.001 # adding additional components that are required for the entity_linker nlp.add_pipe("sentencizer", first=True) # Add a custom component to recognize "Russ Cochran" as an entity for the example training data patterns = [ {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]} ] ruler = nlp.add_pipe("entity_ruler", before="entity_linker") ruler.add_patterns(patterns) # test the trained model predictions = [] for text, annotation in TRAIN_DATA: doc = nlp(text) for ent in doc.ents: predictions.append(ent.kb_id_) assert predictions == GOLD_entities # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) assert nlp2.pipe_names == nlp.pipe_names assert "Q2146908" in nlp2.vocab.strings entity_linker2 = nlp2.get_pipe("entity_linker") assert "Q2146908" in entity_linker2.vocab.strings assert "Q2146908" in entity_linker2.kb.vocab.strings predictions = [] for text, annotation in TRAIN_DATA: doc2 = nlp2(text) for ent in doc2.ents: predictions.append(ent.kb_id_) assert predictions == GOLD_entities # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions texts = [ "Russ Cochran captured his first major title with his son as caddie.", "Russ Cochran his reprints include EC Comics.", "Russ Cochran has been publishing comic art.", "Russ Cochran was a member of University of Kentucky's golf team.", ] batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)] batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)] no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]] assert_equal(batch_deps_1, batch_deps_2) assert_equal(batch_deps_1, no_batch_deps) eval = nlp.evaluate(train_examples) assert "nel_macro_p" in eval assert "nel_macro_r" in eval assert "nel_macro_f" in eval assert "nel_micro_p" in eval assert "nel_micro_r" in eval assert "nel_micro_f" in eval assert "nel_f_per_type" in eval assert "PERSON" in eval["nel_f_per_type"] assert eval["nel_macro_f"] > 0 assert eval["nel_micro_f"] > 0 def test_overfitting_IO_with_ner(): # Simple test to try and overfit the NER and NEL component in combination - ensuring the ML models work correctly nlp = English() vector_length = 3 assert "Q2146908" not in nlp.vocab.strings # Convert the texts to docs to make sure we have doc.ents set for the training examples train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): # create artificial KB - assign same prior weight to the two russ cochran's # Q2146908 (Russ Cochran): American golfer # Q7381115 (Russ Cochran): publisher mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_alias( alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5], ) return mykb # Create the NER and EL components and add them to the pipeline ner = nlp.add_pipe("ner", first=True) entity_linker = nlp.add_pipe( "entity_linker", last=True, config={"use_gold_ents": False} ) entity_linker.set_kb(create_kb) train_examples = [] for text, annotations in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) for ent in annotations.get("entities"): ner.add_label(ent[2]) optimizer = nlp.initialize() # train the NER and NEL pipes for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["ner"] < 0.001 assert losses["entity_linker"] < 0.001 # adding additional components that are required for the entity_linker nlp.add_pipe("sentencizer", first=True) # test the trained model test_text = "Russ Cochran captured his first major title with his son as caddie." doc = nlp(test_text) ents = doc.ents assert len(ents) == 1 assert ents[0].text == "Russ Cochran" assert ents[0].label_ == "PERSON" assert ents[0].kb_id_ != "NIL" # TODO: below assert is still flaky - EL doesn't properly overfit quite yet # assert ents[0].kb_id_ == "Q2146908" # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) assert nlp2.pipe_names == nlp.pipe_names doc2 = nlp2(test_text) ents2 = doc2.ents assert len(ents2) == 1 assert ents2[0].text == "Russ Cochran" assert ents2[0].label_ == "PERSON" assert ents2[0].kb_id_ != "NIL" eval = nlp.evaluate(train_examples) assert "nel_macro_f" in eval assert "nel_micro_f" in eval assert "ents_f" in eval assert "nel_f_per_type" in eval assert "ents_per_type" in eval assert "PERSON" in eval["nel_f_per_type"] assert "PERSON" in eval["ents_per_type"] assert eval["nel_macro_f"] > 0 assert eval["nel_micro_f"] > 0 assert eval["ents_f"] > 0 def test_kb_serialization(): # Test that the KB can be used in a pipeline with a different vocab vector_length = 3 with make_tempdir() as tmp_dir: kb_dir = tmp_dir / "kb" nlp1 = English() assert "Q2146908" not in nlp1.vocab.strings mykb = InMemoryLookupKB(nlp1.vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) assert "Q2146908" in nlp1.vocab.strings mykb.to_disk(kb_dir) nlp2 = English() assert "RandomWord" not in nlp2.vocab.strings nlp2.vocab.strings.add("RandomWord") assert "RandomWord" in nlp2.vocab.strings assert "Q2146908" not in nlp2.vocab.strings # Create the Entity Linker component with the KB from file, and check the final vocab entity_linker = nlp2.add_pipe("entity_linker", last=True) entity_linker.set_kb(load_kb(kb_dir)) assert "Q2146908" in nlp2.vocab.strings assert "RandomWord" in nlp2.vocab.strings @pytest.mark.xfail(reason="Needs fixing") def test_kb_pickle(): # Test that the KB can be pickled nlp = English() kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) assert not kb_1.contains_alias("Russ Cochran") kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) assert kb_1.contains_alias("Russ Cochran") data = pickle.dumps(kb_1) kb_2 = pickle.loads(data) assert kb_2.contains_alias("Russ Cochran") @pytest.mark.xfail(reason="Needs fixing") def test_nel_pickle(): # Test that a pipeline with an EL component can be pickled def create_kb(vocab): kb = InMemoryLookupKB(vocab, entity_vector_length=3) kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) return kb nlp_1 = English() nlp_1.add_pipe("ner") entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True) entity_linker_1.set_kb(create_kb) assert nlp_1.pipe_names == ["ner", "entity_linker"] assert entity_linker_1.kb.contains_alias("Russ Cochran") data = pickle.dumps(nlp_1) nlp_2 = pickle.loads(data) assert nlp_2.pipe_names == ["ner", "entity_linker"] entity_linker_2 = nlp_2.get_pipe("entity_linker") assert entity_linker_2.kb.contains_alias("Russ Cochran") def test_kb_to_bytes(): # Test that the KB's to_bytes method works correctly nlp = English() kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3]) kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) kb_1.add_alias(alias="Boeing", entities=["Q66"], probabilities=[0.5]) kb_1.add_alias( alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2] ) assert kb_1.contains_alias("Russ Cochran") kb_bytes = kb_1.to_bytes() kb_2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) assert not kb_2.contains_alias("Russ Cochran") kb_2 = kb_2.from_bytes(kb_bytes) # check that both KBs are exactly the same assert kb_1.get_size_entities() == kb_2.get_size_entities() assert kb_1.entity_vector_length == kb_2.entity_vector_length assert kb_1.get_entity_strings() == kb_2.get_entity_strings() assert kb_1.get_vector("Q2146908") == kb_2.get_vector("Q2146908") assert kb_1.get_vector("Q66") == kb_2.get_vector("Q66") assert kb_2.contains_alias("Russ Cochran") assert kb_1.get_size_aliases() == kb_2.get_size_aliases() assert kb_1.get_alias_strings() == kb_2.get_alias_strings() assert len(kb_1._get_alias_candidates("Russ Cochran")) == len( kb_2._get_alias_candidates("Russ Cochran") ) assert len(kb_1._get_alias_candidates("Randomness")) == len( kb_2._get_alias_candidates("Randomness") ) def test_nel_to_bytes(): # Test that a pipeline with an EL component can be converted to bytes def create_kb(vocab): kb = InMemoryLookupKB(vocab, entity_vector_length=3) kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) return kb nlp_1 = English() nlp_1.add_pipe("ner") entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True) entity_linker_1.set_kb(create_kb) assert entity_linker_1.kb.contains_alias("Russ Cochran") assert nlp_1.pipe_names == ["ner", "entity_linker"] nlp_bytes = nlp_1.to_bytes() nlp_2 = English() nlp_2.add_pipe("ner") nlp_2.add_pipe("entity_linker", last=True) assert nlp_2.pipe_names == ["ner", "entity_linker"] assert not nlp_2.get_pipe("entity_linker").kb.contains_alias("Russ Cochran") nlp_2 = nlp_2.from_bytes(nlp_bytes) kb_2 = nlp_2.get_pipe("entity_linker").kb assert kb_2.contains_alias("Russ Cochran") assert kb_2.get_vector("Q2146908") == [6, -4, 3] assert_almost_equal( kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8 ) def test_scorer_links(): train_examples = [] nlp = English() ref1 = nlp("Julia lives in London happily.") ref1.ents = [ Span(ref1, 0, 1, label="PERSON", kb_id="Q2"), Span(ref1, 3, 4, label="LOC", kb_id="Q3"), ] pred1 = nlp("Julia lives in London happily.") pred1.ents = [ Span(pred1, 0, 1, label="PERSON", kb_id="Q70"), Span(pred1, 3, 4, label="LOC", kb_id="Q3"), ] train_examples.append(Example(pred1, ref1)) ref2 = nlp("She loves London.") ref2.ents = [ Span(ref2, 0, 1, label="PERSON", kb_id="Q2"), Span(ref2, 2, 3, label="LOC", kb_id="Q13"), ] pred2 = nlp("She loves London.") pred2.ents = [ Span(pred2, 0, 1, label="PERSON", kb_id="Q2"), Span(pred2, 2, 3, label="LOC", kb_id="NIL"), ] train_examples.append(Example(pred2, ref2)) ref3 = nlp("London is great.") ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")] pred3 = nlp("London is great.") pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")] train_examples.append(Example(pred3, ref3)) scores = Scorer().score_links(train_examples, negative_labels=["NIL"]) assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2 assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2 assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1 assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2 assert scores["nel_micro_p"] == 2 / 3 assert scores["nel_micro_r"] == 2 / 4 # fmt: off @pytest.mark.parametrize( "name,config", [ ("entity_linker", {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}), ], ) # fmt: on def test_legacy_architectures(name, config): # Ensure that the legacy architectures still work vector_length = 3 nlp = English() train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp.make_doc(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_alias( alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5], ) return mykb entity_linker = nlp.add_pipe(name, config={"model": config}) assert isinstance(entity_linker, EntityLinker) entity_linker.set_kb(create_kb) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) @pytest.mark.parametrize( "patterns", [ # perfect case [{"label": "CHARACTER", "pattern": "Kirby"}], # typo for false negative [{"label": "PERSON", "pattern": "Korby"}], # random stuff for false positive [{"label": "IS", "pattern": "is"}, {"label": "COLOR", "pattern": "pink"}], ], ) def test_no_gold_ents(patterns): # test that annotating components work TRAIN_DATA = [ ( "Kirby is pink", { "links": {(0, 5): {"Q613241": 1.0}}, "entities": [(0, 5, "CHARACTER")], "sent_starts": [1, 0, 0], }, ) ] nlp = English() vector_length = 3 train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) # Create a ruler to mark entities ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) # Apply ruler to examples. In a real pipeline this would be an annotating component. for eg in train_examples: eg.predicted = ruler(eg.predicted) # Entity ruler is no longer needed (initialization below wipes out the # patterns and causes warnings) nlp.remove_pipe("entity_ruler") def create_kb(vocab): # create artificial KB mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias("Kirby", ["Q613241"], [0.9]) # Placeholder mykb.add_entity(entity="pink", freq=12, entity_vector=[7, 2, -5]) mykb.add_alias("pink", ["pink"], [0.9]) return mykb # Create and train the Entity Linker entity_linker = nlp.add_pipe( "entity_linker", config={"use_gold_ents": False}, last=True ) entity_linker.set_kb(create_kb) assert entity_linker.use_gold_ents is False optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # adding additional components that are required for the entity_linker nlp.add_pipe("sentencizer", first=True) # this will run the pipeline on the examples and shouldn't crash nlp.evaluate(train_examples) @pytest.mark.issue(9575) def test_tokenization_mismatch(): nlp = English() # include a matching entity so that update isn't skipped doc1 = Doc( nlp.vocab, words=["Kirby", "123456"], spaces=[True, False], ents=["B-CHARACTER", "B-CARDINAL"], ) doc2 = Doc( nlp.vocab, words=["Kirby", "123", "456"], spaces=[True, False, False], ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"], ) eg = Example(doc1, doc2) train_examples = [eg] vector_length = 3 def create_kb(vocab): # create placeholder KB mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3]) mykb.add_alias("Kirby", ["Q613241"], [0.9]) return mykb entity_linker = nlp.add_pipe("entity_linker", last=True) entity_linker.set_kb(create_kb) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) nlp.add_pipe("sentencizer", first=True) nlp.evaluate(train_examples) def test_abstract_kb_instantiation(): """Test whether instantiation of abstract KB base class fails.""" with pytest.raises(TypeError): KnowledgeBase(None, 3) # fmt: off @pytest.mark.parametrize( "meet_threshold,config", [ (False, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}), (True, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}), ], ) # fmt: on def test_threshold(meet_threshold: bool, config: Dict[str, Any]): """Tests abstention threshold. meet_threshold (bool): Whether to configure NEL setup so that confidence threshold is met. config (Dict[str, Any]): NEL architecture config. """ nlp = English() nlp.add_pipe("sentencizer") text = "Mahler's Symphony No. 8 was beautiful." entities = [(0, 6, "PERSON")] links = {(0, 6): {"Q7304": 1.0}} sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0] entity_id = "Q7304" doc = nlp(text) train_examples = [ Example.from_dict( doc, {"entities": entities, "links": links, "sent_starts": sent_starts} ) ] def create_kb(vocab): # create artificial KB mykb = InMemoryLookupKB(vocab, entity_vector_length=3) mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3]) mykb.add_alias( alias="Mahler", entities=[entity_id], probabilities=[1 if meet_threshold else 0.01], ) return mykb # Create the Entity Linker component and add it to the pipeline entity_linker = nlp.add_pipe( "entity_linker", last=True, config={"threshold": 0.99, "model": config}, ) entity_linker.set_kb(create_kb) # type: ignore nlp.initialize(get_examples=lambda: train_examples) # Add a custom rule-based component to mimick NER ruler = nlp.add_pipe("entity_ruler", before="entity_linker") ruler.add_patterns([{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}]) # type: ignore doc = nlp(text) assert len(doc.ents) == 1 assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL def test_save_activations(): nlp = English() vector_length = 3 assert "Q2146908" not in nlp.vocab.strings # Convert the texts to docs to make sure we have doc.ents set for the training examples train_examples = [] for text, annotation in TRAIN_DATA: doc = nlp(text) train_examples.append(Example.from_dict(doc, annotation)) def create_kb(vocab): # create artificial KB - assign same prior weight to the two russ cochran's # Q2146908 (Russ Cochran): American golfer # Q7381115 (Russ Cochran): publisher mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_alias( alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5], ) return mykb # Create the Entity Linker component and add it to the pipeline entity_linker = cast(TrainablePipe, nlp.add_pipe("entity_linker", last=True)) assert isinstance(entity_linker, EntityLinker) entity_linker.set_kb(create_kb) assert "Q2146908" in entity_linker.vocab.strings assert "Q2146908" in entity_linker.kb.vocab.strings # initialize the NEL pipe nlp.initialize(get_examples=lambda: train_examples) nO = entity_linker.model.get_dim("nO") nlp.add_pipe("sentencizer", first=True) patterns = [ {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}, {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}, ] ruler = nlp.add_pipe("entity_ruler", before="entity_linker") ruler.add_patterns(patterns) doc = nlp("Russ Cochran was a publisher") assert "entity_linker" not in doc.activations entity_linker.save_activations = True doc = nlp("Russ Cochran was a publisher") assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"} ents = doc.activations["entity_linker"]["ents"] assert isinstance(ents, Ragged) assert ents.data.shape == (2, 1) assert ents.data.dtype == "uint64" assert ents.lengths.shape == (1,) scores = doc.activations["entity_linker"]["scores"] assert isinstance(scores, Ragged) assert scores.data.shape == (2, 1) assert scores.data.dtype == "float32" assert scores.lengths.shape == (1,) def test_span_maker_forward_with_empty(): """The forward pass of the span maker may have a doc with no entities.""" nlp = English() doc1 = nlp("a b c") ent = doc1[0:1] ent.label_ = "X" doc1.ents = [ent] # no entities doc2 = nlp("x y z") # just to get a model span_maker = build_span_maker() span_maker([doc1, doc2], False)