# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True from __future__ import print_function from cymem.cymem cimport Pool cimport numpy as np from itertools import islice from libcpp.vector cimport vector from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free import random from typing import Optional import srsly from thinc.api import set_dropout_rate, CupyOps, get_array_module from thinc.extra.search cimport Beam import numpy.random import numpy import warnings from ._parser_internals.stateclass cimport StateClass from ..tokens.doc cimport Doc from .trainable_pipe import TrainablePipe from ._parser_internals cimport _beam_utils from ._parser_internals import _beam_utils from ..vocab cimport Vocab from ._parser_internals.transition_system cimport TransitionSystem from ..training import validate_examples, validate_get_examples from ..errors import Errors, Warnings from .. import util class Parser(TrainablePipe): """ Base class of the DependencyParser and EntityRecognizer. """ def __init__( self, Vocab vocab, model, name="base_parser", moves=None, *, update_with_oracle_cut_size, min_action_freq, learn_tokens, beam_width=1, beam_density=0.0, beam_update_prob=0.0, multitasks=tuple(), ): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. **cfg: Configuration parameters. Set to the `.cfg` attribute. If it doesn't include a value for 'moves', a new instance is created with `self.TransitionSystem()`. This defines how the parse-state is created, updated and evaluated. """ self.vocab = vocab self.name = name cfg = { "moves": moves, "update_with_oracle_cut_size": update_with_oracle_cut_size, "multitasks": list(multitasks), "min_action_freq": min_action_freq, "learn_tokens": learn_tokens, "beam_width": beam_width, "beam_density": beam_density, "beam_update_prob": beam_update_prob } if moves is None: # defined by EntityRecognizer as a BiluoPushDown moves = self.TransitionSystem(self.vocab.strings) self.moves = moves self.model = model if self.moves.n_moves != 0: self.set_output(self.moves.n_moves) self.cfg = cfg self._multitasks = [] for multitask in cfg["multitasks"]: self.add_multitask_objective(multitask) self._rehearsal_model = None def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" args = (self.vocab, self.model, self.name, self.moves) return args, self.cfg @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def label_data(self): return self.moves.labels @property def tok2vec(self): """Return the embedding and convolutional layer of the model.""" return self.model.get_ref("tok2vec") @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() self.vocab.strings.add(label) return 1 return 0 def _resize(self): self.model.attrs["resize_output"](self.model, self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.attrs["resize_output"]( self._rehearsal_model, self.moves.n_moves ) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): """Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. """ pass def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def __call__(self, Doc doc): """Apply the parser or entity recognizer, setting the annotations onto the `Doc` object. doc (Doc): The document to be processed. """ states = self.predict([doc]) self.set_annotations([doc], states) return doc def pipe(self, docs, *, int batch_size=256): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. YIELDS (Doc): Documents, in order. """ cdef Doc doc for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) by_length = sorted(batch, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch) self.set_annotations(subbatch, parse_states) yield from batch_in_order def predict(self, docs): if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) self._resize() return result if self.cfg["beam_width"] == 1: return self.greedy_parse(docs, drop=0.0) else: return self.beam_parse( docs, drop=0.0, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"] ) def greedy_parse(self, docs, drop=0.): set_dropout_rate(self.model, drop) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() states, scores = self.model.predict((docs, self.moves)) return states def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.): raise NotImplementedError def set_annotations(self, docs, states_or_beams): cdef StateClass state cdef Beam beam cdef Doc doc states = _beam_utils.collect_states(states_or_beams, docs) for i, (state, doc) in enumerate(zip(states, docs)): self.moves.set_annotations(state, doc) for hook in self.postprocesses: hook(doc) def update(self, examples, *, drop=0., sgd=None, losses=None): cdef StateClass state if losses is None: losses = {} losses.setdefault(self.name, 0.) validate_examples(examples, "Parser.update") for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) # We need to take care to act on the whole batch, because we might be # getting vectors via a listener. n_examples = len([eg for eg in examples if self.moves.has_gold(eg)]) if n_examples == 0: return losses set_dropout_rate(self.model, drop) docs = [eg.x for eg in examples] (states, scores), backprop_scores = self.model.begin_update((docs, self.moves)) d_scores = self.get_loss((states, scores), examples) backprop_scores(d_scores) if sgd not in (None, False): self.finish_update(sgd) losses[self.name] += (d_scores**2).sum() # Ugh, this is annoying. If we're working on GPU, we want to free the # memory ASAP. It seems that Python doesn't necessarily get around to # removing these in time if we don't explicitly delete? It's confusing. del backprop_scores return losses def get_loss(self, states_scores, examples): states, scores = states_scores costs = self._get_costs_from_histories( examples, [list(state.history) for state in states] ) xp = get_array_module(scores) best_costs = costs.min(axis=1, keepdims=True) is_gold = costs <= costs.min(axis=1, keepdims=True) gscores = scores[is_gold] max_ = scores.max(axis=1) gmax = gscores.max(axis=1, keepdims=True) exp_scores = xp.exp(scores - max_) exp_gscores = xp.exp(gscores - gmax) Z = exp_scores.sum(axis=1, keepdims=True) gZ = exp_gscores.sum(axis=1, keepdims=True) d_scores = exp_scores / Z d_scores[is_gold] -= exp_gscores / gZ return d_scores def _get_costs_from_histories(self, examples, histories): cdef TransitionSystem moves = self.moves cdef StateClass state cdef int clas cdef int nF = self.model.state2vec.nF cdef int nO = moves.n_moves cdef int nS = sum([len(history) for history in histories]) cdef np.ndarray costs = numpy.zeros((nS, nO), dtype="f") cdef Pool mem = Pool() is_valid = mem.alloc(nO, sizeof(int)) c_costs = costs.data states = moves.init_states([eg.x for eg in examples]) cdef int i = 0 for eg, state, history in zip(examples, states, histories): gold = moves.init_gold(state, eg) for clas in history: moves.set_costs(is_valid, &c_costs[i*nO], state.c, gold) action = moves.c[clas] action.do(state.c, action.label) state.c.history.push_back(clas) i += 1 # If the model is on GPU, copy the costs to device. costs = self.model.ops.asarray(costs) return costs def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" raise NotImplementedError def update_beam(self, examples, *, beam_width, drop=0., sgd=None, losses=None, beam_density=0.0): raise NotImplementedError def set_output(self, nO): self.model.attrs["resize_output"](self.model, nO) def initialize(self, get_examples, nlp=None, labels=None): validate_get_examples(get_examples, "Parser.initialize") lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {}) if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS: langs = ", ".join(util.LEXEME_NORM_LANGS) util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs)) if labels is not None: actions = dict(labels) else: actions = self.moves.get_actions( examples=get_examples(), min_freq=self.cfg['min_action_freq'], learn_tokens=self.cfg["learn_tokens"] ) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) # make sure we resize so we have an appropriate upper layer self._resize() doc_sample = [] if nlp is not None: for name, component in nlp.pipeline: if component is self: break # non-trainable components may have a pipe() implementation that refers to dummy # predict and set_annotations methods if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample, batch_size=8)) else: doc_sample = [component(doc) for doc in doc_sample] if not doc_sample: for example in islice(get_examples(), 10): doc_sample.append(example.predicted) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(doc_sample) if nlp is not None: self.init_multitask_objectives(get_examples, nlp.pipeline) def to_disk(self, path, exclude=tuple()): serializers = { "model": lambda p: (self.model.to_disk(p) if self.model is not True else True), "vocab": lambda p: self.vocab.to_disk(p), "moves": lambda p: self.moves.to_disk(p, exclude=["strings"]), "cfg": lambda p: srsly.write_json(p, self.cfg) } util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple()): deserializers = { "vocab": lambda p: self.vocab.from_disk(p), "moves": lambda p: self.moves.from_disk(p, exclude=["strings"]), "cfg": lambda p: self.cfg.update(srsly.read_json(p)), "model": lambda p: None, } util.from_disk(path, deserializers, exclude) if "model" not in exclude: path = util.ensure_path(path) with (path / "model").open("rb") as file_: bytes_data = file_.read() try: self._resize() self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) from None return self def to_bytes(self, exclude=tuple()): serializers = { "model": lambda: (self.model.to_bytes()), "vocab": lambda: self.vocab.to_bytes(), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple()): deserializers = { "vocab": lambda b: self.vocab.from_bytes(b), "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None, } msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) from None return self