import ujson from thinc.api import add, layerize, chain, clone, concatenate, with_flatten from thinc.neural import Model, Maxout, Softmax, Affine from thinc.neural._classes.hash_embed import HashEmbed from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.util import get_array_module import random import cytoolz from thinc.neural._classes.convolution import ExtractWindow from thinc.neural._classes.static_vectors import StaticVectors from thinc.neural._classes.batchnorm import BatchNorm as BN from thinc.neural._classes.layernorm import LayerNorm as LN from thinc.neural._classes.resnet import Residual from thinc.neural import ReLu from thinc.neural._classes.selu import SELU from thinc import describe from thinc.describe import Dimension, Synapses, Biases, Gradient from thinc.neural._classes.affine import _set_dimensions_if_needed from thinc.api import FeatureExtracter, with_getitem from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool from thinc.neural._classes.attention import ParametricAttention from thinc.linear.linear import LinearModel from thinc.api import uniqued, wrap, flatten_add_lengths from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP from .tokens.doc import Doc from . import util import numpy import io @layerize def _flatten_add_lengths(seqs, pad=0, drop=0.): ops = Model.ops lengths = ops.asarray([len(seq) for seq in seqs], dtype='i') def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths, pad=pad) X = ops.flatten(seqs, pad=pad) return (X, lengths), finish_update @layerize def _logistic(X, drop=0.): xp = get_array_module(X) if not isinstance(X, xp.ndarray): X = xp.asarray(X) # Clip to range (-10, 10) X = xp.minimum(X, 10., X) X = xp.maximum(X, -10., X) Y = 1. / (1. + xp.exp(-X)) def logistic_bwd(dY, sgd=None): dX = dY * (Y * (1-Y)) return dX return Y, logistic_bwd @layerize def add_tuples(X, drop=0.): """Give inputs of sequence pairs, where each sequence is (vals, length), sum the values, returning a single sequence. If input is: ((vals1, length), (vals2, length) Output is: (vals1+vals2, length) vals are a single tensor for the whole batch. """ (vals1, length1), (vals2, length2) = X assert length1 == length2 def add_tuples_bwd(dY, sgd=None): return (dY, dY) return (vals1+vals2, length), add_tuples_bwd def _zero_init(model): def _zero_init_impl(self, X, y): self.W.fill(0) model.on_data_hooks.append(_zero_init_impl) if model.W is not None: model.W.fill(0.) return model @layerize def _preprocess_doc(docs, drop=0.): keys = [doc.to_array([LOWER]) for doc in docs] keys = [a[:, 0] for a in keys] ops = Model.ops lengths = ops.asarray([arr.shape[0] for arr in keys]) keys = ops.xp.concatenate(keys) vals = ops.allocate(keys.shape[0]) + 1 return (keys, vals, lengths), None def _init_for_precomputed(W, ops): if (W**2).sum() != 0.: return reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2])) ops.xavier_uniform_init(reshaped) W[:] = reshaped.reshape(W.shape) @describe.on_data(_set_dimensions_if_needed) @describe.attributes( nI=Dimension("Input size"), nF=Dimension("Number of features"), nO=Dimension("Output size"), W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nI), lambda W, ops: _init_for_precomputed(W, ops)), b=Biases("Bias vector", lambda obj: (obj.nO,)), d_W=Gradient("W"), d_b=Gradient("b") ) class PrecomputableAffine(Model): def __init__(self, nO=None, nI=None, nF=None, **kwargs): Model.__init__(self, **kwargs) self.nO = nO self.nI = nI self.nF = nF def begin_update(self, X, drop=0.): # X: (b, i) # Yf: (b, f, i) # dY: (b, o) # dYf: (b, f, o) #Yf = numpy.einsum('bi,foi->bfo', X, self.W) Yf = self.ops.xp.tensordot( X, self.W, axes=[[1], [2]]) Yf += self.b def backward(dY_ids, sgd=None): tensordot = self.ops.xp.tensordot dY, ids = dY_ids Xf = X[ids] #dXf = numpy.einsum('bo,foi->bfi', dY, self.W) dXf = tensordot(dY, self.W, axes=[[1], [1]]) #dW = numpy.einsum('bo,bfi->ofi', dY, Xf) dW = tensordot(dY, Xf, axes=[[0], [0]]) # ofi -> foi self.d_W += dW.transpose((1, 0, 2)) self.d_b += dY.sum(axis=0) if sgd is not None: sgd(self._mem.weights, self._mem.gradient, key=self.id) return dXf return Yf, backward @describe.on_data(_set_dimensions_if_needed) @describe.attributes( nI=Dimension("Input size"), nF=Dimension("Number of features"), nP=Dimension("Number of pieces"), nO=Dimension("Output size"), W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI), lambda W, ops: ops.xavier_uniform_init(W)), b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)), d_W=Gradient("W"), d_b=Gradient("b") ) class PrecomputableMaxouts(Model): def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs): Model.__init__(self, **kwargs) self.nO = nO self.nP = nP self.nI = nI self.nF = nF def begin_update(self, X, drop=0.): # X: (b, i) # Yfp: (b, f, o, p) # Xf: (f, b, i) # dYp: (b, o, p) # W: (f, o, p, i) # b: (o, p) # bi,opfi->bfop # bop,fopi->bfi # bop,fbi->opfi : fopi tensordot = self.ops.xp.tensordot ascontiguous = self.ops.xp.ascontiguousarray Yfp = tensordot(X, self.W, axes=[[1], [3]]) Yfp += self.b def backward(dYp_ids, sgd=None): dYp, ids = dYp_ids Xf = X[ids] dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]]) dW = tensordot(dYp, Xf, axes=[[0], [0]]) self.d_W += dW.transpose((2, 0, 1, 3)) self.d_b += dYp.sum(axis=0) if sgd is not None: sgd(self._mem.weights, self._mem.gradient, key=self.id) return dXf return Yfp, backward def drop_layer(layer, factor=2.): def drop_layer_fwd(X, drop=0.): drop *= factor mask = layer.ops.get_dropout_mask((1,), drop) if mask is None or mask > 0: return layer.begin_update(X, drop=drop) else: return X, lambda dX, sgd=None: dX model = wrap(drop_layer_fwd, layer) model.predict = layer return model def Tok2Vec(width, embed_size, preprocess=None): cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}): norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower') prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix') suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix') shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape') embed = (norm | prefix | suffix | shape ) >> LN(Maxout(width, width*4, pieces=3)) tok2vec = ( with_flatten( asarray(Model.ops, dtype='uint64') >> uniqued(embed, column=5) >> drop_layer( Residual( (ExtractWindow(nW=1) >> LN(Maxout(width, width*3))) ) ) ** 4, pad=4 ) ) if preprocess not in (False, None): tok2vec = preprocess >> tok2vec # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width tok2vec.embed = embed return tok2vec def asarray(ops, dtype): def forward(X, drop=0.): return ops.asarray(X, dtype=dtype), None return layerize(forward) def foreach(layer): def forward(Xs, drop=0.): results = [] backprops = [] for X in Xs: result, bp = layer.begin_update(X, drop=drop) results.append(result) backprops.append(bp) def backward(d_results, sgd=None): dXs = [] for d_result, backprop in zip(d_results, backprops): dXs.append(backprop(d_result, sgd)) return dXs return results, backward model = layerize(forward) model._layers.append(layer) return model def rebatch(size, layer): ops = layer.ops def forward(X, drop=0.): if X.shape[0] < size: return layer.begin_update(X) parts = _divide_array(X, size) results, bp_results = zip(*[layer.begin_update(p, drop=drop) for p in parts]) y = ops.flatten(results) def backward(dy, sgd=None): d_parts = [bp(y, sgd=sgd) for bp, y in zip(bp_results, _divide_array(dy, size))] try: dX = ops.flatten(d_parts) except TypeError: dX = None except ValueError: dX = None return dX return y, backward model = layerize(forward) model._layers.append(layer) return model def _divide_array(X, size): parts = [] index = 0 while index < len(X): parts.append(X[index : index + size]) index += size return parts def get_col(idx): assert idx >= 0, idx def forward(X, drop=0.): assert idx >= 0, idx if isinstance(X, numpy.ndarray): ops = NumpyOps() else: ops = CupyOps() output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype) def backward(y, sgd=None): assert idx >= 0, idx dX = ops.allocate(X.shape) dX[:, idx] += y return dX return output, backward return layerize(forward) def zero_init(model): def _hook(self, X, y=None): self.W.fill(0) model.on_data_hooks.append(_hook) return model def doc2feats(cols=None): if cols is None: cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] def forward(docs, drop=0.): feats = [] for doc in docs: feats.append(doc.to_array(cols)) return feats, None model = layerize(forward) model.cols = cols return model def print_shape(prefix): def forward(X, drop=0.): return X, lambda dX, **kwargs: dX return layerize(forward) @layerize def get_token_vectors(tokens_attrs_vectors, drop=0.): ops = Model.ops tokens, attrs, vectors = tokens_attrs_vectors def backward(d_output, sgd=None): return (tokens, d_output) return vectors, backward def fine_tune(embedding, combine=None): if combine is not None: raise NotImplementedError( "fine_tune currently only supports addition. Set combine=None") def fine_tune_fwd(docs_tokvecs, drop=0.): docs, tokvecs = docs_tokvecs lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i') vecs, bp_vecs = embedding.begin_update(docs, drop=drop) flat_tokvecs = embedding.ops.flatten(tokvecs) flat_vecs = embedding.ops.flatten(vecs) output = embedding.ops.unflatten( (model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths) def fine_tune_bwd(d_output, sgd=None): flat_grad = model.ops.flatten(d_output) model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum() model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum() bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd) if sgd is not None: sgd(model._mem.weights, model._mem.gradient, key=model.id) return [d_o * model.mix[0] for d_o in d_output] return output, fine_tune_bwd def fine_tune_predict(docs_tokvecs): docs, tokvecs = docs_tokvecs vecs = embedding(docs) return [model.mix[0]*tv+model.mix[1]*v for tv, v in zip(tokvecs, vecs)] model = wrap(fine_tune_fwd, embedding) model.mix = model._mem.add((model.id, 'mix'), (2,)) model.mix.fill(0.5) model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix')) model.predict = fine_tune_predict return model @layerize def flatten(seqs, drop=0.): if isinstance(seqs[0], numpy.ndarray): ops = NumpyOps() elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray): ops = CupyOps() else: raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0])) lengths = [len(seq) for seq in seqs] def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths) X = ops.xp.vstack(seqs) return X, finish_update @layerize def logistic(X, drop=0.): xp = get_array_module(X) if not isinstance(X, xp.ndarray): X = xp.asarray(X) # Clip to range (-10, 10) X = xp.minimum(X, 10., X) X = xp.maximum(X, -10., X) Y = 1. / (1. + xp.exp(-X)) def logistic_bwd(dY, sgd=None): dX = dY * (Y * (1-Y)) return dX return Y, logistic_bwd def zero_init(model): def _zero_init_impl(self, X, y): self.W.fill(0) model.on_data_hooks.append(_zero_init_impl) return model @layerize def preprocess_doc(docs, drop=0.): keys = [doc.to_array([LOWER]) for doc in docs] keys = [a[:, 0] for a in keys] ops = Model.ops lengths = ops.asarray([arr.shape[0] for arr in keys]) keys = ops.xp.concatenate(keys) vals = ops.allocate(keys.shape[0]) + 1 return (keys, vals, lengths), None def getitem(i): def getitem_fwd(X, drop=0.): return X[i], None return layerize(getitem_fwd) def build_tagger_model(nr_class, token_vector_width, **cfg): embed_size = util.env_opt('embed_size', 7500) with Model.define_operators({'>>': chain, '+': add}): # Input: (doc, tensor) tuples private_tok2vec = Tok2Vec(token_vector_width, embed_size, preprocess=doc2feats()) model = ( fine_tune(private_tok2vec) >> with_flatten( Maxout(token_vector_width, token_vector_width) >> Softmax(nr_class, token_vector_width) ) ) model.nI = None return model def build_text_classifier(nr_class, width=64, **cfg): nr_vector = cfg.get('nr_vector', 200) with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}): embed_lower = HashEmbed(width, nr_vector, column=1) embed_prefix = HashEmbed(width//2, nr_vector, column=2) embed_suffix = HashEmbed(width//2, nr_vector, column=3) embed_shape = HashEmbed(width//2, nr_vector, column=4) cnn_model = ( FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE]) >> _flatten_add_lengths >> with_getitem(0, uniqued( (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(width, width+(width//2)*3)) >> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3)) >> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3)) >> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3)) ) >> ParametricAttention(width,) >> Pooling(sum_pool) >> ReLu(width, width) >> zero_init(Affine(nr_class, width, drop_factor=0.0)) ) linear_model = ( _preprocess_doc >> LinearModel(nr_class, drop_factor=0.) ) model = ( (linear_model | cnn_model) >> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0)) >> logistic ) model.lsuv = False return model