# cython: profile=True from preshed.maps cimport PreshMap from preshed.counter cimport PreshCounter from .lexeme cimport * cimport cython import numpy as np cimport numpy as np POS = 0 ENTITY = 0 DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef class Tokens: """A sequence of references to Lexeme objects. The Tokens class provides fast and memory-efficient access to lexical features, and can efficiently export the data to a numpy array. >>> from spacy.en import EN >>> tokens = EN.tokenize('An example sentence.') """ def __init__(self, Language lang, string_length=0): self.lang = lang if string_length >= 3: size = int(string_length / 3.0) else: size = 5 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME self.data = data_start + PADDING self.max_length = size self.length = 0 def __getitem__(self, i): bounds_check(i, self.length, PADDING) return Token(self.lang, i, self.data[i].idx, self.data[i].pos, self.data[i].lemma, self.data[i].head, self.data[i].dep_tag, self.data[i].lex[0]) def __iter__(self): for i in range(self.length): yield self[i] def __len__(self): return self.length cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1: if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.data[self.length] if LexemeOrToken is TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok self.length += 1 return idx + t.lex.length @cython.boundscheck(False) cpdef np.ndarray[long, ndim=2] get_array(self, list attr_ids): cdef int i, j cdef attr_id_t feature cdef np.ndarray[long, ndim=2] output output = np.ndarray(shape=(self.length, len(attr_ids)), dtype=int) for i in range(self.length): for j, feature in enumerate(attr_ids): output[i, j] = get_attr(self.data[i].lex, feature) return output def count_by(self, attr_id_t attr_id): cdef int i cdef attr_t attr cdef size_t count cdef PreshCounter counts = PreshCounter(2 ** 8) for i in range(self.length): if attr_id == LEMMA: attr = self.data[i].lemma else: attr = get_attr(self.data[i].lex, attr_id) counts.inc(attr, 1) return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.data - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.data = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.data[i].lex = &EMPTY_LEXEME @cython.freelist(64) cdef class Token: def __init__(self, Language lang, int i, int idx, int pos, int lemma, int head, int dep_tag, dict lex): self.lang = lang self.idx = idx self.pos = pos self.i = i self.head = head self.dep_tag = dep_tag self.id = lex['id'] self.lemma = lemma self.cluster = lex['cluster'] self.length = lex['length'] self.postype = lex['pos_type'] self.sensetype = 0 self.sic = lex['sic'] self.norm = lex['dense'] self.shape = lex['shape'] self.suffix = lex['suffix'] self.prefix = lex['prefix'] self.prob = lex['prob'] self.flags = lex['flags'] property string: def __get__(self): if self.sic == 0: return '' cdef bytes utf8string = self.lang.lexicon.strings[self.sic] return utf8string.decode('utf8') property lemma: def __get__(self): if self.lemma == 0: return self.string cdef bytes utf8string = self.lang.lexicon.strings[self.lemma] return utf8string.decode('utf8') property pos: def __get__(self): return self.lang.pos_tagger.tag_names[self.pos]