spaCy v3.0 features all new **transformer-based pipelines** that bring spaCy's
accuracy right up to the current **state-of-the-art**. You can use any
pretrained transformer to train your own pipelines, and even share one
transformer between multiple components with **multi-task learning**. Training
is now fully configurable and extensible, and you can define your own custom
models using **PyTorch**, **TensorFlow** and other frameworks. The new spaCy
projects system lets you describe whole **end-to-end workflows** in a single
file, giving you an easy path from prototype to production, and making it easy
to clone and adapt best-practice projects for your own use cases.
- [Summary](#summary)
- [New features](#features)
- [Transformer-based pipelines](#features-transformers)
- [Training & config system](#features-training)
- [Custom models](#features-custom-models)
- [End-to-end project workflows](#features-projects)
- [Parallel training with Ray](#features-parallel-training)
- [New built-in components](#features-pipeline-components)
- [New custom component API](#features-components)
- [Dependency matching](#features-dep-matcher)
- [Python type hints](#features-types)
- [New methods & attributes](#new-methods)
- [New & updated documentation](#new-docs)
- [Backwards incompatibilities](#incompat)
- [Migrating from spaCy v2.x](#migrating)
## New Features {#features}
This section contains an overview of the most important **new features and
improvements**. The [API docs](/api) include additional deprecation notes. New
methods and functions that were introduced in this version are marked with the
tag
To help you get started with spaCy v3.0 and the new features, we've added
several new or rewritten documentation pages, including a new usage guide on
[embeddings, transformers and transfer learning](/usage/embeddings-transformers),
a guide on [training pipelines and models](/usage/training) rewritten from
scratch, a page explaining the new [spaCy projects](/usage/projects) and updated
usage documentation on
[custom pipeline components](/usage/processing-pipelines#custom-components).
We've also added a bunch of new illustrations and new API reference pages
documenting spaCy's machine learning [model architectures](/api/architectures)
and the expected [data formats](/api/data-formats). API pages about
[pipeline components](/api/#architecture-pipeline) now include more information,
like the default config and implementation, and we've adopted a more detailed
format for documenting argument and return types.
[![Library architecture](../images/architecture.svg)](/api)