# coding: utf8 from ...symbols import ( ADJ, DET, NOUN, NUM, PRON, PROPN, VERB ) from ...lemmatizer import Lemmatizer class RussianLemmatizer(Lemmatizer): _morph = None def __init__(self): super().__init__() try: from pymorphy2 import MorphAnalyzer except ImportError: raise ImportError( 'The Russian lemmatizer requires the pymorphy2 library: ' 'try to fix it with "pip install pymorphy2"') if RussianLemmatizer._morph is None: RussianLemmatizer._morph = MorphAnalyzer() def __call__(self, string, univ_pos, morphology=None): univ_pos = self.normalize_univ_pos(univ_pos) if univ_pos not in ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'): # Skip unchangeable pos return [string.lower()] analyses = self._morph.parse(string) filtered_analyses = [] for analysis in analyses: if not analysis.is_known: # Skip suggested parse variant for unknown word for pymorphy continue analysis_pos, _ = oc2ud(str(analysis.tag)) if analysis_pos == univ_pos \ or (analysis_pos in ('NOUN', 'PROPN') and univ_pos in ('NOUN', 'PROPN')): filtered_analyses.append(analysis) if not len(filtered_analyses): return [string.lower()] if morphology is None: return list(set([analysis.normal_form for analysis in filtered_analyses])) if univ_pos in ('ADJ', 'DET', 'NOUN', 'PROPN'): features_to_compare = ['Case', 'Number', 'Gender'] elif univ_pos == 'NUM': features_to_compare = ['Case', 'Gender'] elif univ_pos == 'PRON': features_to_compare = ['Case', 'Number', 'Gender', 'Person'] else: # VERB features_to_compare = ['Aspect', 'Gender', 'Mood', 'Number', 'Tense', 'VerbForm', 'Voice'] analyses, filtered_analyses = filtered_analyses, [] for analysis in analyses: _, analysis_morph = oc2ud(str(analysis.tag)) for feature in features_to_compare: if feature in morphology and morphology[feature] != analysis_morph[feature]: break else: filtered_analyses.append(analysis) if not len(filtered_analyses): return [string.lower()] return list(set([analysis.normal_form for analysis in filtered_analyses])) @staticmethod def normalize_univ_pos(univ_pos): if isinstance(univ_pos, str): return univ_pos.upper() symbols_to_str = { ADJ: 'ADJ', DET: 'DET', NOUN: 'NOUN', NUM: 'NUM', PRON: 'PRON', PROPN: 'PROPN', VERB: 'VERB' } if univ_pos in symbols_to_str: return symbols_to_str[univ_pos] return None def is_base_form(self, univ_pos, morphology=None): # TODO raise NotImplementedError # ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'): def det(self, string, morphology=None): return self(string, 'det', morphology) def num(self, string, morphology=None): return self(string, 'num', morphology) def pron(self, string, morphology=None): return self(string, 'pron', morphology) def lookup(self, string): analyses = self._morph.parse(string) if len(analyses) == 1: return analyses[0].normal_form return string def oc2ud(oc_tag): gram_map = { '_POS': { 'ADJF': 'ADJ', 'ADJS': 'ADJ', 'ADVB': 'ADV', 'Apro': 'DET', 'COMP': 'ADJ', # Can also be an ADV - unchangeable 'CONJ': 'CCONJ', # Can also be a SCONJ - both unchangeable ones 'GRND': 'VERB', 'INFN': 'VERB', 'INTJ': 'INTJ', 'NOUN': 'NOUN', 'NPRO': 'PRON', 'NUMR': 'NUM', 'NUMB': 'NUM', 'PNCT': 'PUNCT', 'PRCL': 'PART', 'PREP': 'ADP', 'PRTF': 'VERB', 'PRTS': 'VERB', 'VERB': 'VERB', }, 'Animacy': { 'anim': 'Anim', 'inan': 'Inan', }, 'Aspect': { 'impf': 'Imp', 'perf': 'Perf', }, 'Case': { 'ablt': 'Ins', 'accs': 'Acc', 'datv': 'Dat', 'gen1': 'Gen', 'gen2': 'Gen', 'gent': 'Gen', 'loc2': 'Loc', 'loct': 'Loc', 'nomn': 'Nom', 'voct': 'Voc', }, 'Degree': { 'COMP': 'Cmp', 'Supr': 'Sup', }, 'Gender': { 'femn': 'Fem', 'masc': 'Masc', 'neut': 'Neut', }, 'Mood': { 'impr': 'Imp', 'indc': 'Ind', }, 'Number': { 'plur': 'Plur', 'sing': 'Sing', }, 'NumForm': { 'NUMB': 'Digit', }, 'Person': { '1per': '1', '2per': '2', '3per': '3', 'excl': '2', 'incl': '1', }, 'Tense': { 'futr': 'Fut', 'past': 'Past', 'pres': 'Pres', }, 'Variant': { 'ADJS': 'Brev', 'PRTS': 'Brev', }, 'VerbForm': { 'GRND': 'Conv', 'INFN': 'Inf', 'PRTF': 'Part', 'PRTS': 'Part', 'VERB': 'Fin', }, 'Voice': { 'actv': 'Act', 'pssv': 'Pass', }, 'Abbr': { 'Abbr': 'Yes' } } pos = 'X' morphology = dict() unmatched = set() grams = oc_tag.replace(' ', ',').split(',') for gram in grams: match = False for categ, gmap in sorted(gram_map.items()): if gram in gmap: match = True if categ == '_POS': pos = gmap[gram] else: morphology[categ] = gmap[gram] if not match: unmatched.add(gram) while len(unmatched) > 0: gram = unmatched.pop() if gram in ('Name', 'Patr', 'Surn', 'Geox', 'Orgn'): pos = 'PROPN' elif gram == 'Auxt': pos = 'AUX' elif gram == 'Pltm': morphology['Number'] = 'Ptan' return pos, morphology if __name__ == '__main__': l = RussianLemmatizer() print(l.noun('гвоздики', {'Gender': 'Fem'}))