# cython: infer_types=True, binding=True from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple import srsly from thinc.api import Model, Optimizer, set_dropout_rate from ..tokens.doc cimport Doc from .. import util from ..errors import Errors from ..language import Language from ..training import Example, validate_distillation_examples, validate_examples from ..vocab import Vocab from .pipe import Pipe, deserialize_config cdef class TrainablePipe(Pipe): """This class is a base class and not instantiated directly. Trainable pipeline components like the EntityRecognizer or TextCategorizer inherit from it and it defines the interface that components should follow to function as trainable components in a spaCy pipeline. DOCS: https://spacy.io/api/pipe """ def __init__(self, vocab: Vocab, model: Model, name: str, **cfg): """Initialize a pipeline component. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name. **cfg: Additional settings and config parameters. DOCS: https://spacy.io/api/pipe#init """ self.vocab = vocab self.model = model self.name = name self.cfg = dict(cfg) def __call__(self, Doc doc) -> Doc: """Apply the pipe to one document. The document is modified in place, and returned. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. docs (Doc): The Doc to process. RETURNS (Doc): The processed Doc. DOCS: https://spacy.io/api/pipe#call """ error_handler = self.get_error_handler() try: scores = self.predict([doc]) self.set_annotations([doc], scores) return doc except Exception as e: error_handler(self.name, self, [doc], e) def distill(self, teacher_pipe: Optional["TrainablePipe"], examples: Iterable["Example"], *, drop: float = 0.0, sgd: Optional[Optimizer] = None, losses: Optional[Dict[str, float]] = None ) -> Dict[str, float]: """Train a pipe (the student) on the predictions of another pipe (the teacher). The student is typically trained on the probability distribution of the teacher, but details may differ per pipe. teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn from. examples (Iterable[Example]): Distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and the same orthography. drop (float): dropout rate. sgd (Optional[Optimizer]): An optimizer. Will be created via create_optimizer if not set. losses (Optional[Dict[str, float]]): Optional record of loss during distillation. RETURNS: The updated losses dictionary. DOCS: https://spacy.io/api/pipe#distill """ # By default we require a teacher pipe, but there are downstream # implementations that don't require a pipe. if teacher_pipe is None: raise ValueError(Errors.E4002.format(name=self.name)) if losses is None: losses = {} losses.setdefault(self.name, 0.0) validate_distillation_examples(examples, "TrainablePipe.distill") set_dropout_rate(self.model, drop) for node in teacher_pipe.model.walk(): if node.name == "softmax": node.attrs["softmax_normalize"] = True teacher_scores = teacher_pipe.model.predict([eg.reference for eg in examples]) student_scores, bp_student_scores = self.model.begin_update([eg.predicted for eg in examples]) loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores) bp_student_scores(d_scores) if sgd is not None: self.finish_update(sgd) losses[self.name] += loss return losses def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]: """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. error_handler (Callable[[str, List[Doc], Exception], Any]): Function that deals with a failing batch of documents. The default function just reraises the exception. YIELDS (Doc): Processed documents in order. DOCS: https://spacy.io/api/pipe#pipe """ error_handler = self.get_error_handler() for docs in util.minibatch(stream, size=batch_size): try: scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs except Exception as e: error_handler(self.name, self, docs, e) def predict(self, docs: Iterable[Doc]): """Apply the pipeline's model to a batch of docs, without modifying them. Returns a single tensor for a batch of documents. docs (Iterable[Doc]): The documents to predict. RETURNS: Vector representations of the predictions. DOCS: https://spacy.io/api/pipe#predict """ raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="predict", name=self.name)) def set_annotations(self, docs: Iterable[Doc], scores): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. scores: The scores to assign. DOCS: https://spacy.io/api/pipe#set_annotations """ raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="set_annotations", name=self.name)) def update(self, examples: Iterable["Example"], *, drop: float = 0.0, sgd: Optimizer = None, losses: Optional[Dict[str, float]] = None) -> Dict[str, float]: """Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to predict and get_loss. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://spacy.io/api/pipe#update """ if losses is None: losses = {} if not hasattr(self, "model") or self.model in (None, True, False): return losses losses.setdefault(self.name, 0.0) validate_examples(examples, "TrainablePipe.update") if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples): # Handle cases where there are no tokens in any docs. return losses set_dropout_rate(self.model, drop) scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples]) loss, d_scores = self.get_loss(examples, scores) bp_scores(d_scores) if sgd not in (None, False): self.finish_update(sgd) losses[self.name] += loss return losses def rehearse(self, examples: Iterable[Example], *, sgd: Optimizer = None, losses: Dict[str, float] = None, **config) -> Dict[str, float]: """Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model, to try to address the "catastrophic forgetting" problem. This feature is experimental. examples (Iterable[Example]): A batch of Example objects. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://spacy.io/api/pipe#rehearse """ pass def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]: """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETURNS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/pipe#get_loss """ raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="get_loss", name=self.name)) def get_teacher_student_loss(self, teacher_scores, student_scores): """Calculate the loss and its gradient for a batch of student scores, relative to teacher scores. teacher_scores: Scores representing the teacher model's predictions. student_scores: Scores representing the student model's predictions. RETURNS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/pipe#get_teacher_student_loss """ raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="get_teacher_student_loss", name=self.name)) def create_optimizer(self) -> Optimizer: """Create an optimizer for the pipeline component. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/pipe#create_optimizer """ return util.create_default_optimizer() def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language = None): """Initialize the pipe for training, using data examples if available. This method needs to be implemented by each TrainablePipe component, ensuring the internal model (if available) is initialized properly using the provided sample of Example objects. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects. nlp (Language): The current nlp object the component is part of. DOCS: https://spacy.io/api/pipe#initialize """ raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="initialize", name=self.name)) def add_label(self, label: str) -> int: """Add an output label. For TrainablePipe components, it is possible to extend pretrained models with new labels, but care should be taken to avoid the "catastrophic forgetting" problem. label (str): The label to add. RETURNS (int): 0 if label is already present, otherwise 1. DOCS: https://spacy.io/api/pipe#add_label """ raise NotImplementedError(Errors.E931.format(parent="Pipe", method="add_label", name=self.name)) @property def is_distillable(self) -> bool: # Normally a pipe overrides `get_teacher_student_loss` to implement # distillation. In more exceptional cases, a pipe can provide its # own `distill` implementation. If neither of these methods is # overridden, the pipe does not implement distillation. return not (self.__class__.distill is TrainablePipe.distill and self.__class__.get_teacher_student_loss is TrainablePipe.get_teacher_student_loss) @property def is_trainable(self) -> bool: return True @property def is_resizable(self) -> bool: return getattr(self, "model", None) and "resize_output" in self.model.attrs def _allow_extra_label(self) -> None: """Raise an error if the component can not add any more labels.""" nO = None if self.model.has_dim("nO"): nO = self.model.get_dim("nO") elif self.model.has_ref("output_layer") and self.model.get_ref("output_layer").has_dim("nO"): nO = self.model.get_ref("output_layer").get_dim("nO") if nO is not None and nO == len(self.labels): if not self.is_resizable: raise ValueError(Errors.E922.format(name=self.name, nO=self.model.get_dim("nO"))) def set_output(self, nO: int) -> None: if self.is_resizable: self.model.attrs["resize_output"](self.model, nO) else: raise NotImplementedError(Errors.E921) def use_params(self, params: dict): """Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored. params (dict): The parameter values to use in the model. DOCS: https://spacy.io/api/pipe#use_params """ with self.model.use_params(params): yield def finish_update(self, sgd: Optimizer) -> None: """Update parameters using the current parameter gradients. The Optimizer instance contains the functionality to perform the stochastic gradient descent. sgd (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/pipe#finish_update """ self.model.finish_update(sgd) def _validate_serialization_attrs(self): """Check that the pipe implements the required attributes. If a subclass implements a custom __init__ method but doesn't set these attributes, they currently default to None, so we need to perform additonal checks. """ if not hasattr(self, "vocab") or self.vocab is None: raise ValueError(Errors.E899.format(name=util.get_object_name(self))) if not hasattr(self, "model") or self.model is None: raise ValueError(Errors.E898.format(name=util.get_object_name(self))) def to_bytes(self, *, exclude=tuple()): """Serialize the pipe to a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. DOCS: https://spacy.io/api/pipe#to_bytes """ self._validate_serialization_attrs() serialize = {} if hasattr(self, "cfg") and self.cfg is not None: serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude) serialize["model"] = self.model.to_bytes return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load the pipe from a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (TrainablePipe): The loaded object. DOCS: https://spacy.io/api/pipe#from_bytes """ self._validate_serialization_attrs() def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) from None deserialize = {} if hasattr(self, "cfg") and self.cfg is not None: deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b)) deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude) deserialize["model"] = load_model util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, *, exclude=tuple()): """Serialize the pipe to disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://spacy.io/api/pipe#to_disk """ self._validate_serialization_attrs() serialize = {} if hasattr(self, "cfg") and self.cfg is not None: serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude) serialize["model"] = lambda p: self.model.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, *, exclude=tuple()): """Load the pipe from disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (TrainablePipe): The loaded object. DOCS: https://spacy.io/api/pipe#from_disk """ self._validate_serialization_attrs() def load_model(p): try: with open(p, "rb") as mfile: self.model.from_bytes(mfile.read()) except AttributeError: raise ValueError(Errors.E149) from None deserialize = {} if hasattr(self, "cfg") and self.cfg is not None: deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude) deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) return self @property def save_activations(self): return self._save_activations @save_activations.setter def save_activations(self, save_activations: bool): self._save_activations = save_activations