# coding: utf-8 from __future__ import unicode_literals import pytest from spacy.kb import KnowledgeBase from spacy.lang.en import English from spacy.pipeline import EntityRuler @pytest.fixture def nlp(): return English() def test_kb_valid_entities(nlp): """Test the valid construction of a KB with 3 entities and two aliases""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.5, entity_vector=[2]) mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3]) # adding aliases mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2]) mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9]) # test the size of the corresponding KB assert(mykb.get_size_entities() == 3) assert(mykb.get_size_aliases() == 2) def test_kb_invalid_entities(nlp): """Test the invalid construction of a KB with an alias linked to a non-existing entity""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2]) mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3]) # adding aliases - should fail because one of the given IDs is not valid with pytest.raises(ValueError): mykb.add_alias(alias='douglas', entities=['Q2', 'Q342'], probabilities=[0.8, 0.2]) def test_kb_invalid_probabilities(nlp): """Test the invalid construction of a KB with wrong prior probabilities""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2]) mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3]) # adding aliases - should fail because the sum of the probabilities exceeds 1 with pytest.raises(ValueError): mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.4]) def test_kb_invalid_combination(nlp): """Test the invalid construction of a KB with non-matching entity and probability lists""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2]) mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3]) # adding aliases - should fail because the entities and probabilities vectors are not of equal length with pytest.raises(ValueError): mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.3, 0.4, 0.1]) def test_kb_invalid_entity_vector(nlp): """Test the invalid construction of a KB with non-matching entity vector lengths""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1, 2, 3]) # this should fail because the kb's expected entity vector length is 3 with pytest.raises(ValueError): mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2]) def test_candidate_generation(nlp): """Test correct candidate generation""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2]) mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3]) # adding aliases mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2]) mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9]) # test the size of the relevant candidates assert(len(mykb.get_candidates('douglas')) == 2) assert(len(mykb.get_candidates('adam')) == 1) assert(len(mykb.get_candidates('shrubbery')) == 0) def test_preserving_links_asdoc(nlp): """Test that Span.as_doc preserves the existing entity links""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1]) mykb.add_entity(entity='Q2', prob=0.8, entity_vector=[1]) # adding aliases mykb.add_alias(alias='Boston', entities=['Q1'], probabilities=[0.7]) mykb.add_alias(alias='Denver', entities=['Q2'], probabilities=[0.6]) # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained) sentencizer = nlp.create_pipe("sentencizer") nlp.add_pipe(sentencizer) ruler = EntityRuler(nlp) patterns = [{"label": "GPE", "pattern": "Boston"}, {"label": "GPE", "pattern": "Denver"}] ruler.add_patterns(patterns) nlp.add_pipe(ruler) el_pipe = nlp.create_pipe(name='entity_linker', config={}) el_pipe.set_kb(mykb) el_pipe.begin_training() el_pipe.context_weight = 0 el_pipe.prior_weight = 1 nlp.add_pipe(el_pipe, last=True) # test whether the entity links are preserved by the `as_doc()` function text = "She lives in Boston. He lives in Denver." doc = nlp(text) for ent in doc.ents: orig_text = ent.text orig_kb_id = ent.kb_id_ sent_doc = ent.sent.as_doc() for s_ent in sent_doc.ents: if s_ent.text == orig_text: assert s_ent.kb_id_ == orig_kb_id