from __future__ import unicode_literals from __future__ import division from os import path import os import shutil import json import cython import numpy.random from thinc.features cimport Feature, count_feats cdef int arg_max(const weight_t* scores, const int n_classes) nogil: cdef int i cdef int best = 0 cdef weight_t mode = scores[0] for i in range(1, n_classes): if scores[i] > mode: mode = scores[i] best = i return best cdef class Model: def __init__(self, n_classes, templates, model_loc=None): if model_loc is not None and path.isdir(model_loc): model_loc = path.join(model_loc, 'model') self.n_classes = n_classes self._extractor = Extractor(templates) self._model = LinearModel(n_classes, self._extractor.n_templ) self.model_loc = model_loc if self.model_loc and path.exists(self.model_loc): self._model.load(self.model_loc, freq_thresh=0) cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1: cdef int n_feats if cost == 0: self._model.update({}) else: feats = self._extractor.get_feats(context, &n_feats) counts = {gold: {}, guess: {}} count_feats(counts[gold], feats, n_feats, cost) count_feats(counts[guess], feats, n_feats, -cost) self._model.update(counts) @cython.cdivision @cython.boundscheck(False) cdef int regularize(self, Feature* feats, int n, int a=3) except -1: # Use the Zipfian corruptions technique from here: # http://www.aclweb.org/anthology/N13-1077 # This seems good for 0.1 - 0.3 % on OOD data. cdef int i cdef long[:] zipfs = numpy.random.zipf(a, n) for i in range(n): feats[i].value *= 1 / zipfs[i] def end_training(self): self._model.end_training() self._model.dump(self.model_loc, freq_thresh=0)