#!/usr/bin/env python # coding: utf8 """Example of defining and (pre)training spaCy's knowledge base, which is needed to implement entity linking functionality. For more details, see the documentation: * Knowledge base: https://spacy.io/api/kb * Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking Compatible with: spaCy vX.X Last tested with: vX.X """ from __future__ import unicode_literals, print_function import plac from pathlib import Path from spacy.vocab import Vocab import spacy from spacy.kb import KnowledgeBase from bin.wiki_entity_linking.train_descriptions import EntityEncoder # Q2146908 (Russ Cochran): American golfer # Q7381115 (Russ Cochran): publisher ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)} INPUT_DIM = 300 # dimension of pretrained input vectors DESC_WIDTH = 64 # dimension of output entity vectors @plac.annotations( vocab_path=("Path to the vocab for the kb", "option", "v", Path), model=("Model name, should have pretrained word embeddings", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int), ) def main(vocab_path=None, model=None, output_dir=None, n_iter=50): """Load the model, create the KB and pretrain the entity encodings. Either an nlp model or a vocab is needed to provide access to pretrained word embeddings. If an output_dir is provided, the KB will be stored there in a file 'kb'. When providing an nlp model, the updated vocab will also be written to a directory in the output_dir.""" if model is None and vocab_path is None: raise ValueError("Either the `nlp` model or the `vocab` should be specified.") if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: vocab = Vocab().from_disk(vocab_path) # create blank Language class with specified vocab nlp = spacy.blank("en", vocab=vocab) print("Created blank 'en' model with vocab from '%s'" % vocab_path) kb = KnowledgeBase(vocab=nlp.vocab) # set up the data entity_ids = [] descriptions = [] freqs = [] for key, value in ENTITIES.items(): desc, freq = value entity_ids.append(key) descriptions.append(desc) freqs.append(freq) # training entity description encodings # this part can easily be replaced with a custom entity encoder encoder = EntityEncoder( nlp=nlp, input_dim=INPUT_DIM, desc_width=DESC_WIDTH, epochs=n_iter, threshold=0.001, ) encoder.train(description_list=descriptions, to_print=True) # get the pretrained entity vectors embeddings = encoder.apply_encoder(descriptions) # set the entities, can also be done by calling `kb.add_entity` for each entity kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=embeddings) # adding aliases, the entities need to be defined in the KB beforehand kb.add_alias( alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.24, 0.7], # the sum of these probabilities should not exceed 1 ) # test the trained model print() _print_kb(kb) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() kb_path = str(output_dir / "kb") kb.dump(kb_path) print() print("Saved KB to", kb_path) # only storing the vocab if we weren't already reading it from file if not vocab_path: vocab_path = output_dir / "vocab" kb.vocab.to_disk(vocab_path) print("Saved vocab to", vocab_path) print() # test the saved model # always reload a knowledge base with the same vocab instance! print("Loading vocab from", vocab_path) print("Loading KB from", kb_path) vocab2 = Vocab().from_disk(vocab_path) kb2 = KnowledgeBase(vocab=vocab2) kb2.load_bulk(kb_path) _print_kb(kb2) print() def _print_kb(kb): print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings()) print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings()) if __name__ == "__main__": plac.call(main) # Expected output: # 2 kb entities: ['Q2146908', 'Q7381115'] # 1 kb aliases: ['Russ Cochran']