# coding: utf8 from __future__ import unicode_literals import pytest import gc import numpy import copy from spacy.lang.en import English from spacy.lang.en.stop_words import STOP_WORDS from spacy.lang.lex_attrs import is_stop from spacy.vectors import Vectors from spacy.vocab import Vocab from spacy.language import Language from spacy.tokens import Doc, Span, Token from spacy.pipeline import Tagger, EntityRecognizer from spacy.attrs import HEAD, DEP from spacy.matcher import Matcher from ..util import make_tempdir def test_issue1506(): def string_generator(): for _ in range(10001): yield "It's sentence produced by that bug." for _ in range(10001): yield "I erase some hbdsaj lemmas." for _ in range(10001): yield "I erase lemmas." for _ in range(10001): yield "It's sentence produced by that bug." for _ in range(10001): yield "It's sentence produced by that bug." nlp = English() for i, d in enumerate(nlp.pipe(string_generator())): # We should run cleanup more than one time to actually cleanup data. # In first run — clean up only mark strings as «not hitted». if i == 10000 or i == 20000 or i == 30000: gc.collect() for t in d: str(t.lemma_) def test_issue1518(): """Test vectors.resize() works.""" vectors = Vectors(shape=(10, 10)) vectors.add("hello", row=2) vectors.resize((5, 9)) def test_issue1537(): """Test that Span.as_doc() doesn't segfault.""" string = "The sky is blue . The man is pink . The dog is purple ." doc = Doc(Vocab(), words=string.split()) doc[0].sent_start = True for word in doc[1:]: if word.nbor(-1).text == ".": word.sent_start = True else: word.sent_start = False sents = list(doc.sents) sent0 = sents[0].as_doc() sent1 = sents[1].as_doc() assert isinstance(sent0, Doc) assert isinstance(sent1, Doc) # TODO: Currently segfaulting, due to l_edge and r_edge misalignment # def test_issue1537_model(): # nlp = load_spacy('en') # doc = nlp('The sky is blue. The man is pink. The dog is purple.') # sents = [s.as_doc() for s in doc.sents] # print(list(sents[0].noun_chunks)) # print(list(sents[1].noun_chunks)) def test_issue1539(): """Ensure vectors.resize() doesn't try to modify dictionary during iteration.""" v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100]) v.resize((100, 100)) def test_issue1547(): """Test that entity labels still match after merging tokens.""" words = ["\n", "worda", ".", "\n", "wordb", "-", "Biosphere", "2", "-", " \n"] doc = Doc(Vocab(), words=words) doc.ents = [Span(doc, 6, 8, label=doc.vocab.strings["PRODUCT"])] with doc.retokenize() as retokenizer: retokenizer.merge(doc[5:7]) assert [ent.text for ent in doc.ents] def test_issue1612(en_tokenizer): doc = en_tokenizer("The black cat purrs.") span = doc[1:3] assert span.orth_ == span.text def test_issue1654(): nlp = Language(Vocab()) assert not nlp.pipeline nlp.add_pipe(lambda doc: doc, name="1") nlp.add_pipe(lambda doc: doc, name="2", after="1") nlp.add_pipe(lambda doc: doc, name="3", after="2") assert nlp.pipe_names == ["1", "2", "3"] nlp2 = Language(Vocab()) assert not nlp2.pipeline nlp2.add_pipe(lambda doc: doc, name="3") nlp2.add_pipe(lambda doc: doc, name="2", before="3") nlp2.add_pipe(lambda doc: doc, name="1", before="2") assert nlp2.pipe_names == ["1", "2", "3"] @pytest.mark.parametrize("text", ["test@example.com", "john.doe@example.co.uk"]) def test_issue1698(en_tokenizer, text): doc = en_tokenizer(text) assert len(doc) == 1 assert not doc[0].like_url def test_issue1727(): """Test that models with no pretrained vectors can be deserialized correctly after vectors are added.""" data = numpy.ones((3, 300), dtype="f") vectors = Vectors(data=data, keys=["I", "am", "Matt"]) tagger = Tagger(Vocab()) tagger.add_label("PRP") with pytest.warns(UserWarning): tagger.begin_training() assert tagger.cfg.get("pretrained_dims", 0) == 0 tagger.vocab.vectors = vectors with make_tempdir() as path: tagger.to_disk(path) tagger = Tagger(Vocab()).from_disk(path) assert tagger.cfg.get("pretrained_dims", 0) == 0 def test_issue1757(): """Test comparison against None doesn't cause segfault.""" doc = Doc(Vocab(), words=["a", "b", "c"]) assert not doc[0] < None assert not doc[0] is None assert doc[0] >= None assert not doc[:2] < None assert not doc[:2] is None assert doc[:2] >= None assert not doc.vocab["a"] is None assert not doc.vocab["a"] < None def test_issue1758(en_tokenizer): """Test that "would've" is handled by the English tokenizer exceptions.""" tokens = en_tokenizer("would've") assert len(tokens) == 2 assert tokens[0].tag_ == "MD" assert tokens[1].lemma_ == "have" def test_issue1773(en_tokenizer): """Test that spaces don't receive a POS but no TAG. This is the root cause of the serialization issue reported in #1773.""" doc = en_tokenizer("\n") if doc[0].pos_ == "SPACE": assert doc[0].tag_ != "" def test_issue1799(): """Test sentence boundaries are deserialized correctly, even for non-projective sentences.""" heads_deps = numpy.asarray( [ [1, 397], [4, 436], [2, 426], [1, 402], [0, 8206900633647566924], [18446744073709551615, 440], [18446744073709551614, 442], ], dtype="uint64", ) doc = Doc(Vocab(), words="Just what I was looking for .".split()) doc.vocab.strings.add("ROOT") doc = doc.from_array([HEAD, DEP], heads_deps) assert len(list(doc.sents)) == 1 def test_issue1807(): """Test vocab.set_vector also adds the word to the vocab.""" vocab = Vocab() assert "hello" not in vocab vocab.set_vector("hello", numpy.ones((50,), dtype="f")) assert "hello" in vocab def test_issue1834(): """Test that sentence boundaries & parse/tag flags are not lost during serialization.""" string = "This is a first sentence . And another one" doc = Doc(Vocab(), words=string.split()) doc[6].sent_start = True new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) assert new_doc[6].sent_start assert not new_doc.is_parsed assert not new_doc.is_tagged doc.is_parsed = True doc.is_tagged = True new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) assert new_doc.is_parsed assert new_doc.is_tagged def test_issue1868(): """Test Vocab.__contains__ works with int keys.""" vocab = Vocab() lex = vocab["hello"] assert lex.orth in vocab assert lex.orth_ in vocab assert "some string" not in vocab int_id = vocab.strings.add("some string") assert int_id not in vocab def test_issue1883(): matcher = Matcher(Vocab()) matcher.add("pat1", None, [{"orth": "hello"}]) doc = Doc(matcher.vocab, words=["hello"]) assert len(matcher(doc)) == 1 new_matcher = copy.deepcopy(matcher) new_doc = Doc(new_matcher.vocab, words=["hello"]) assert len(new_matcher(new_doc)) == 1 @pytest.mark.parametrize("word", ["the"]) def test_issue1889(word): assert is_stop(word, STOP_WORDS) == is_stop(word.upper(), STOP_WORDS) def test_issue1915(): cfg = {"hidden_depth": 2} # should error out nlp = Language() nlp.add_pipe(nlp.create_pipe("ner")) nlp.get_pipe("ner").add_label("answer") with pytest.raises(ValueError): nlp.begin_training(**cfg) def test_issue1945(): """Test regression in Matcher introduced in v2.0.6.""" matcher = Matcher(Vocab()) matcher.add("MWE", None, [{"orth": "a"}, {"orth": "a"}]) doc = Doc(matcher.vocab, words=["a", "a", "a"]) matches = matcher(doc) # we should see two overlapping matches here assert len(matches) == 2 assert matches[0][1:] == (0, 2) assert matches[1][1:] == (1, 3) def test_issue1963(en_tokenizer): """Test that doc.merge() resizes doc.tensor""" doc = en_tokenizer("a b c d") doc.tensor = numpy.ones((len(doc), 128), dtype="f") with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2]) assert len(doc) == 3 assert doc.tensor.shape == (3, 128) @pytest.mark.parametrize("label", ["U-JOB-NAME"]) def test_issue1967(label): ner = EntityRecognizer(Vocab()) entry = ([0], ["word"], ["tag"], [0], ["dep"], [label]) gold_parses = [(None, [(entry, None)])] ner.moves.get_actions(gold_parses=gold_parses) def test_issue1971(en_vocab): # Possibly related to #2675 and #2671? matcher = Matcher(en_vocab) pattern = [ {"ORTH": "Doe"}, {"ORTH": "!", "OP": "?"}, {"_": {"optional": True}, "OP": "?"}, {"ORTH": "!", "OP": "?"}, ] Token.set_extension("optional", default=False) matcher.add("TEST", None, pattern) doc = Doc(en_vocab, words=["Hello", "John", "Doe", "!"]) # We could also assert length 1 here, but this is more conclusive, because # the real problem here is that it returns a duplicate match for a match_id # that's not actually in the vocab! matches = matcher(doc) assert all([match_id in en_vocab.strings for match_id, start, end in matches]) def test_issue_1971_2(en_vocab): matcher = Matcher(en_vocab) pattern1 = [{"ORTH": "EUR", "LOWER": {"IN": ["eur"]}}, {"LIKE_NUM": True}] pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}] # {"IN": ["EUR"]}}] doc = Doc(en_vocab, words=["EUR", "10", "is", "10", "EUR"]) matcher.add("TEST1", None, pattern1, pattern2) matches = matcher(doc) assert len(matches) == 2 def test_issue_1971_3(en_vocab): """Test that pattern matches correctly for multiple extension attributes.""" Token.set_extension("a", default=1, force=True) Token.set_extension("b", default=2, force=True) doc = Doc(en_vocab, words=["hello", "world"]) matcher = Matcher(en_vocab) matcher.add("A", None, [{"_": {"a": 1}}]) matcher.add("B", None, [{"_": {"b": 2}}]) matches = sorted((en_vocab.strings[m_id], s, e) for m_id, s, e in matcher(doc)) assert len(matches) == 4 assert matches == sorted([("A", 0, 1), ("A", 1, 2), ("B", 0, 1), ("B", 1, 2)]) def test_issue_1971_4(en_vocab): """Test that pattern matches correctly with multiple extension attribute values on a single token. """ Token.set_extension("ext_a", default="str_a", force=True) Token.set_extension("ext_b", default="str_b", force=True) matcher = Matcher(en_vocab) doc = Doc(en_vocab, words=["this", "is", "text"]) pattern = [{"_": {"ext_a": "str_a", "ext_b": "str_b"}}] * 3 matcher.add("TEST", None, pattern) matches = matcher(doc) # Uncommenting this caused a segmentation fault assert len(matches) == 1 assert matches[0] == (en_vocab.strings["TEST"], 0, 3)