# cython: embedsignature=True from libc.string cimport memset from preshed.maps cimport PreshMap from preshed.counter cimport PreshCounter from .strings cimport slice_unicode from .vocab cimport EMPTY_LEXEME from .typedefs cimport attr_id_t, attr_t from .typedefs cimport LEMMA from .typedefs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER from .typedefs cimport POS, LEMMA, TAG, DEP from .parts_of_speech import UNIV_POS_NAMES from .parts_of_speech cimport CONJ, PUNCT from .lexeme cimport check_flag from .spans import Span from .structs cimport UniStr from unidecode import unidecode cimport numpy import numpy cimport cython from cpython.mem cimport PyMem_Malloc, PyMem_Free from libc.string cimport memcpy DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil: if feat_name == LEMMA: return token.lemma elif feat_name == POS: return token.pos elif feat_name == TAG: return token.tag elif feat_name == DEP: return token.dep else: return get_lex_attr(token.lex, feat_name) cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil: if feat_name < (sizeof(flags_t) * 8): return check_flag(lex, feat_name) elif feat_name == ID: return lex.id elif feat_name == ORTH: return lex.orth elif feat_name == LOWER: return lex.lower elif feat_name == NORM: return lex.norm elif feat_name == SHAPE: return lex.shape elif feat_name == PREFIX: return lex.prefix elif feat_name == SUFFIX: return lex.suffix elif feat_name == LENGTH: return lex.length elif feat_name == CLUSTER: return lex.cluster else: return 0 cdef class Tokens: """ Container class for annotated text. Constructed via English.__call__ or Tokenizer.__call__. """ def __cinit__(self, Vocab vocab, unicode string): self.vocab = vocab self._string = string string_length = len(string) if string_length >= 3: size = int(string_length / 3.0) else: size = 5 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME self.data = data_start + PADDING self.max_length = size self.length = 0 self.is_tagged = False self.is_parsed = False self._py_tokens = [] def __getitem__(self, object i): """Retrieve a token. The Python Token objects are created lazily from internal C data, and cached in _py_tokens Returns: token (Token): """ if i < 0: i = self.length + i bounds_check(i, self.length, PADDING) return Token.cinit(self.vocab, self._string, &self.data[i], i, self.length, self) def __iter__(self): """Iterate over the tokens. Yields: token (Token): """ for i in range(self.length): yield Token.cinit(self.vocab, self._string, &self.data[i], i, self.length, self) def __len__(self): return self.length def __unicode__(self): cdef const TokenC* last = &self.data[self.length - 1] return self._string[:last.idx + last.lex.length] @property def string(self): return unicode(self) @property def ents(self): """Yields named-entity Span objects. Iterate over the span to get individual Token objects, or access the label: >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.') >>> ents = list(tokens.ents) >>> ents[0].label, ents[0].label_, ''.join(t.orth_ for t in ents[0]) (112504, u'PERSON', u'Best ') """ cdef int i cdef const TokenC* token cdef int start = -1 cdef int label = 0 for i in range(self.length): token = &self.data[i] if token.ent_iob == 1: assert start != -1 pass elif token.ent_iob == 2: if start != -1: yield Span(self, start, i, label=label) start = -1 label = 0 elif token.ent_iob == 3: if start != -1: yield Span(self, start, i, label=label) start = i label = token.ent_type if start != -1: yield Span(self, start, self.length, label=label) @property def sents(self): """Yield a list of sentence Span objects, calculated from the dependency parse. """ cdef int i cdef Tokens sent = Tokens(self.vocab, self._string[self.data[0].idx:]) start = None for i in range(self.length): if start is None: start = i if self.data[i].sent_end: yield Span(self, start, i+1) start = None if start is not None: yield Span(self, start, self.length) cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1: if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.data[self.length] if LexemeOrToken is TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok t.idx = idx self.length += 1 self._py_tokens.append(None) return idx + t.lex.length @cython.boundscheck(False) cpdef long[:,:] to_array(self, object py_attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy ndarray of shape N*M, where N is the length of the sentence. Arguments: attr_ids (list[int]): A list of attribute ID ints. Returns: feat_array (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input attr_ids. """ cdef int i, j cdef attr_id_t feature cdef numpy.ndarray[long, ndim=2] output # Make an array from the attributes --- otherwise our inner loop is Python # dict iteration. cdef numpy.ndarray[long, ndim=1] attr_ids = numpy.asarray(py_attr_ids) output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int) for i in range(self.length): for j, feature in enumerate(attr_ids): output[i, j] = get_token_attr(&self.data[i], feature) return output def count_by(self, attr_id_t attr_id, exclude=None): """Produce a dict of {attribute (int): count (ints)} frequencies, keyed by the values of the given attribute ID. >>> from spacy.en import English, attrs >>> nlp = English() >>> tokens = nlp(u'apple apple orange banana') >>> tokens.count_by(attrs.ORTH) {12800L: 1, 11880L: 2, 7561L: 1} >>> tokens.to_array([attrs.ORTH]) array([[11880], [11880], [ 7561], [12800]]) """ cdef int i cdef attr_t attr cdef size_t count cdef PreshCounter counts = PreshCounter(2 ** 8) for i in range(self.length): if exclude is not None and exclude(self[i]): continue attr = get_token_attr(&self.data[i], attr_id) counts.inc(attr, 1) return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.data - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.data = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.data[i].lex = &EMPTY_LEXEME cdef int set_parse(self, const TokenC* parsed) except -1: # TODO: This method is fairly misleading atm. It's used by GreedyParser # to actually apply the parse calculated. Need to rethink this. self._py_tokens = [None] * self.length self.is_parsed = True for i in range(self.length): self.data[i] = parsed[i] def merge(self, int start_idx, int end_idx, unicode tag, unicode lemma, unicode ent_type): """Merge a multi-word expression into a single token. Currently experimental; API is likely to change.""" cdef int i cdef int start = -1 cdef int end = -1 for i in range(self.length): if self.data[i].idx == start_idx: start = i if (self.data[i].idx + self.data[i].lex.length) == end_idx: if start == -1: return None end = i + 1 break else: return None # Get LexemeC for newly merged token cdef UniStr new_orth_c slice_unicode(&new_orth_c, self._string, start_idx, end_idx) cdef const LexemeC* lex = self.vocab.get(self.mem, &new_orth_c) # House the new merged token where it starts cdef TokenC* token = &self.data[start] # Update fields token.lex = lex # What to do about morphology?? # TODO: token.morph = ??? token.tag = self.vocab.strings[tag] token.lemma = self.vocab.strings[lemma] if ent_type == 'O': token.ent_iob = 2 token.ent_type = 0 else: token.ent_iob = 3 token.ent_type = self.vocab.strings[ent_type] # Fix dependencies # Begin by setting all the head indices to absolute token positions # This is easier to work with for now than the offsets for i in range(self.length): self.data[i].head += i # Find the head of the merged token, and its dep relation outer_heads = {} for i in range(start, end): head_idx = self.data[i].head if head_idx == i or head_idx < start or head_idx >= end: # Don't consider "heads" which are actually dominated by a word # in the region we're merging gp = head_idx while self.data[gp].head != gp: if start <= gp < end: break gp = self.data[gp].head else: # If we have multiple words attaching to the same head, # but with different dep labels, we're preferring the last # occurring dep label. Shrug. What else could we do, I guess? outer_heads[head_idx] = self.data[i].dep token.head, token.dep = max(outer_heads.items()) # Adjust deps before shrinking tokens # Tokens which point into the merged token should now point to it # Subtract the offset from all tokens which point to >= end offset = (end - start) - 1 for i in range(self.length): head_idx = self.data[i].head if start <= head_idx < end: self.data[i].head = start elif head_idx >= end: self.data[i].head -= offset # TODO: Fix left and right deps # Now compress the token array for i in range(end, self.length): self.data[i - offset] = self.data[i] for i in range(self.length - offset, self.length): memset(&self.data[i], 0, sizeof(TokenC)) self.data[i].lex = &EMPTY_LEXEME self.length -= offset for i in range(self.length): # ...And, set heads back to a relative position self.data[i].head -= i # Clear cached Python objects self._py_tokens = [None] * self.length # Return the merged Python object return self[start] cdef class Token: """An individual token --- i.e. a word, a punctuation symbol, etc. Created via Tokens.__getitem__ and Tokens.__iter__. """ def __cinit__(self, Vocab vocab, unicode string): self.vocab = vocab self._string = string def __dealloc__(self): if self._owns_c_data: # Cast through const, if we own the data PyMem_Free(self.c) def __len__(self): return self.c.lex.length def __unicode__(self): return self.string cpdef bint check_flag(self, attr_id_t flag_id) except -1: return check_flag(self.c.lex, flag_id) cdef int take_ownership_of_c_data(self) except -1: owned_data = PyMem_Malloc(sizeof(TokenC) * self.array_len) memcpy(owned_data, self.c, sizeof(TokenC) * self.array_len) self.c = owned_data self._owns_c_data = True def nbor(self, int i=1): return Token.cinit(self.vocab, self._string, self.c, self.i, self.array_len, self._seq) property string: def __get__(self): if (self.i+1) == self._seq.length: return self._string[self.c.idx:] cdef int next_idx = (self.c + 1).idx if next_idx < self.c.idx: next_idx = self.c.idx + self.c.lex.length return self._string[self.c.idx:next_idx] property prob: def __get__(self): return self.c.lex.prob property idx: def __get__(self): return self.c.idx property cluster: def __get__(self): return self.c.lex.cluster property orth: def __get__(self): return self.c.lex.orth property lower: def __get__(self): return self.c.lex.lower property norm: def __get__(self): return self.c.lex.norm property shape: def __get__(self): return self.c.lex.shape property prefix: def __get__(self): return self.c.lex.prefix property suffix: def __get__(self): return self.c.lex.suffix property lemma: def __get__(self): return self.c.lemma property pos: def __get__(self): return self.c.pos property tag: def __get__(self): return self.c.tag property dep: def __get__(self): return self.c.dep property repvec: def __get__(self): return numpy.asarray( self.c.lex.repvec) property n_lefts: def __get__(self): cdef int n = 0 cdef const TokenC* ptr = self.c - self.i while ptr != self.c: if ptr + ptr.head == self.c: n += 1 ptr += 1 return n property n_rights: def __get__(self): cdef int n = 0 cdef const TokenC* ptr = self.c + (self.array_len - self.i) while ptr != self.c: if ptr + ptr.head == self.c: n += 1 ptr -= 1 return n property lefts: def __get__(self): """The leftward immediate children of the word, in the syntactic dependency parse. """ cdef const TokenC* ptr = self.c - self.i while ptr < self.c: # If this head is still to the right of us, we can skip to it # No token that's between this token and this head could be our # child. if (ptr.head >= 1) and (ptr + ptr.head) < self.c: ptr += ptr.head elif ptr + ptr.head == self.c: yield Token.cinit(self.vocab, self._string, ptr, ptr - (self.c - self.i), self.array_len, self._seq) ptr += 1 else: ptr += 1 property rights: def __get__(self): """The rightward immediate children of the word, in the syntactic dependency parse.""" cdef const TokenC* ptr = (self.c - self.i) + (self.array_len - 1) tokens = [] while ptr > self.c: # If this head is still to the right of us, we can skip to it # No token that's between this token and this head could be our # child. if (ptr.head < 0) and ((ptr + ptr.head) > self.c): ptr += ptr.head elif ptr + ptr.head == self.c: tokens.append(Token.cinit(self.vocab, self._string, ptr, ptr - (self.c - self.i), self.array_len, self._seq)) ptr -= 1 else: ptr -= 1 tokens.reverse() for t in tokens: yield t property children: def __get__(self): yield from self.lefts yield from self.rights property subtree: def __get__(self): for word in self.lefts: yield from word.subtree yield self for word in self.rights: yield from word.subtree property head: def __get__(self): """The token predicted by the parser to be the head of the current token.""" return Token.cinit(self.vocab, self._string, self.c + self.c.head, self.i + self.c.head, self.array_len, self._seq) property conjuncts: def __get__(self): """Get a list of conjoined words""" cdef Token word conjs = [] if self.c.pos != CONJ and self.c.pos != PUNCT: seen_conj = False for word in reversed(list(self.lefts)): if word.c.pos == CONJ: seen_conj = True elif seen_conj and word.c.pos == self.c.pos: conjs.append(word) conjs.reverse() conjs.append(self) if seen_conj: return conjs elif self is not self.head and self in self.head.conjuncts: return self.head.conjuncts else: return [] property ent_type: def __get__(self): return self.c.ent_type property ent_iob: def __get__(self): return self.c.ent_iob property ent_type_: def __get__(self): return self.vocab.strings[self.c.ent_type] property ent_iob_: def __get__(self): iob_strings = ('', 'I', 'O', 'B') return iob_strings[self.c.ent_iob] property whitespace_: def __get__(self): return self.string[self.c.lex.length:] property orth_: def __get__(self): return self.vocab.strings[self.c.lex.orth] property lower_: def __get__(self): return self.vocab.strings[self.c.lex.lower] property norm_: def __get__(self): return self.vocab.strings[self.c.lex.norm] property shape_: def __get__(self): return self.vocab.strings[self.c.lex.shape] property prefix_: def __get__(self): return self.vocab.strings[self.c.lex.prefix] property suffix_: def __get__(self): return self.vocab.strings[self.c.lex.suffix] property lemma_: def __get__(self): return self.vocab.strings[self.c.lemma] property pos_: def __get__(self): return _pos_id_to_string[self.c.pos] property tag_: def __get__(self): return self.vocab.strings[self.c.tag] property dep_: def __get__(self): return self.vocab.strings[self.c.dep] _pos_id_to_string = {id_: string for string, id_ in UNIV_POS_NAMES.items()} _parse_unset_error = """Text has not been parsed, so cannot be accessed. Check that the parser data is installed. Run "python -m spacy.en.download" if not. Check whether parse=False in the call to English.__call__ """