//- 💫 DOCS > API > LANGUAGE include ../../_includes/_mixins p | A text-processing pipeline. Usually you'll load this once per process, | and pass the instance around your application. +h(2, "init") Language.__init__ +tag method p Initialise a #[code Language] object. +aside-code("Example"). from spacy.language import Language nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies']) from spacy.lang.en import English nlp = English() +table(["Name", "Type", "Description"]) +row +cell #[code vocab] +cell #[code Vocab] +cell | A #[code Vocab] object. If #[code True], a vocab is created via | #[code Language.Defaults.create_vocab]. +row +cell #[code make_doc] +cell function +cell | A function that takes text and returns a #[code Doc] object. | Usually a #[code Tokenizer]. +row +cell #[code pipeline] +cell list +cell | A list of annotation processes or IDs of annotation, processes, | e.g. a #[code Tagger] object, or #[code 'tagger']. IDs are looked | up in #[code Language.Defaults.factories]. +row +cell #[code meta] +cell dict +cell | Custom meta data for the #[code Language] class. Is written to by | models to add model meta data. +footrow +cell returns +cell #[code Language] +cell The newly constructed object. +h(2, "call") Language.__call__ +tag method p | Apply the pipeline to some text. The text can span multiple sentences, | and can contain arbtrary whitespace. Alignment into the original string | is preserved. +aside-code("Example"). tokens = nlp('An example sentence. Another example sentence.') tokens[0].text, tokens[0].head.tag_ # ('An', 'NN') +table(["Name", "Type", "Description"]) +row +cell #[code text] +cell unicode +cell The text to be processed. +row +cell #[code **disabled] +cell - +cell Elements of the pipeline that should not be run. +footrow +cell returns +cell #[code Doc] +cell A container for accessing the annotations. +h(2, "update") Language.update +tag method p Update the models in the pipeline. +aside-code("Example"). with nlp.begin_training(gold, use_gpu=True) as (trainer, optimizer): for epoch in trainer.epochs(gold): for docs, golds in epoch: state = nlp.update(docs, golds, sgd=optimizer) +table(["Name", "Type", "Description"]) +row +cell #[code docs] +cell iterable +cell A batch of #[code Doc] objects. +row +cell #[code golds] +cell iterable +cell A batch of #[code GoldParse] objects. +row +cell #[code drop] +cell float +cell The dropout rate. +row +cell #[code sgd] +cell function +cell An optimizer. +footrow +cell returns +cell dict +cell Results from the update. +h(2, "begin_training") Language.begin_training +tag contextmanager p | Allocate models, pre-process training data and acquire a trainer and | optimizer. Used as a contextmanager. +aside-code("Example"). with nlp.begin_training(gold, use_gpu=True) as (trainer, optimizer): for epoch in trainer.epochs(gold): for docs, golds in epoch: state = nlp.update(docs, golds, sgd=optimizer) +table(["Name", "Type", "Description"]) +row +cell #[code gold_tuples] +cell iterable +cell Gold-standard training data. +row +cell #[code **cfg] +cell - +cell Config parameters. +footrow +cell yields +cell tuple +cell A trainer and an optimizer. +h(2, "use_params") Language.use_params +tag contextmanager +tag method p | Replace weights of models in the pipeline with those provided in the | params dictionary. Can be used as a contextmanager, in which case, models | go back to their original weights after the block. +aside-code("Example"). with nlp.use_params(optimizer.averages): nlp.to_disk('/tmp/checkpoint') +table(["Name", "Type", "Description"]) +row +cell #[code params] +cell dict +cell A dictionary of parameters keyed by model ID. +row +cell #[code **cfg] +cell - +cell Config parameters. +h(2, "pipe") Language.pipe +tag method p | Process texts as a stream, and yield #[code Doc] objects in order. | Supports GIL-free multi-threading. +aside-code("Example"). texts = [u'One document.', u'...', u'Lots of documents'] for doc in nlp.pipe(texts, batch_size=50, n_threads=4): assert doc.is_parsed +table(["Name", "Type", "Description"]) +row +cell #[code texts] +cell - +cell A sequence of unicode objects. +row +cell #[code n_threads] +cell int +cell | The number of worker threads to use. If #[code -1], OpenMP will | decide how many to use at run time. Default is #[code 2]. +row +cell #[code batch_size] +cell int +cell The number of texts to buffer. +footrow +cell yields +cell #[code Doc] +cell Documents in the order of the original text. +h(2, "to_disk") Language.to_disk +tag method p Save the current state to a directory. +aside-code("Example"). nlp.to_disk('/path/to/models') +table(["Name", "Type", "Description"]) +row +cell #[code path] +cell unicode or #[code Path] +cell | A path to a directory, which will be created if it doesn't exist. | Paths may be either strings or #[code Path]-like objects. +row +cell #[code **exclude] +cell - +cell Named attributes to prevent from being saved. +h(2, "from_disk") Language.from_disk +tag method p Loads state from a directory. Modifies the object in place and returns it. +aside-code("Example"). from spacy.language import Language nlp = Language().from_disk('/path/to/models') +table(["Name", "Type", "Description"]) +row +cell #[code path] +cell unicode or #[code Path] +cell | A path to a directory. Paths may be either strings or | #[code Path]-like objects. +row +cell #[code **exclude] +cell - +cell Named attributes to prevent from being loaded. +footrow +cell returns +cell #[code Language] +cell The modified #[code Language] object. +h(2, "to_bytes") Language.to_bytes +tag method p Serialize the current state to a binary string. +aside-code("Example"). nlp_bytes = nlp.to_bytes() +table(["Name", "Type", "Description"]) +row +cell #[code **exclude] +cell - +cell Named attributes to prevent from being serialized. +footrow +cell returns +cell bytes +cell The serialized form of the #[code Language] object. +h(2, "from_bytes") Language.from_bytes +tag method p Load state from a binary string. +aside-code("Example"). fron spacy.lang.en import English nlp_bytes = nlp.to_bytes() nlp2 = English() nlp2.from_bytes(nlp_bytes) +table(["Name", "Type", "Description"]) +row +cell #[code bytes_data] +cell bytes +cell The data to load from. +row +cell #[code **exclude] +cell - +cell Named attributes to prevent from being loaded. +footrow +cell returns +cell bytes +cell The serialized form of the #[code Language] object. +h(2, "attributes") Attributes +table(["Name", "Type", "Description"]) +row +cell #[code vocab] +cell #[code Vocab] +cell A container for the lexical types. +row +cell #[code make_doc] +cell #[code lambda text: Doc] +cell Create a #[code Doc] object from unicode text. +row +cell #[code pipeline] +cell list +cell Sequence of annotation functions. +row +cell #[code meta] +cell dict +cell | Custom meta data for the Language class. If a model is loaded, | contains meta data of the model. +h(2, "class-attributes") Class attributes +table(["Name", "Type", "Description"]) +row +cell #[code Defaults] +cell class +cell | Settings, data and factory methods for creating the | #[code nlp] object and processing pipeline. +row +cell #[code lang] +cell unicode +cell | Two-letter language ID, i.e. | #[+a("https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes") ISO code].