# coding: utf-8 from __future__ import unicode_literals import pytest import numpy from spacy.tokens import Doc, Span from spacy.vocab import Vocab from spacy.errors import ModelsWarning from spacy.attrs import ENT_TYPE, ENT_IOB from ..util import get_doc @pytest.mark.parametrize("text", [["one", "two", "three"]]) def test_doc_api_compare_by_string_position(en_vocab, text): doc = Doc(en_vocab, words=text) # Get the tokens in this order, so their ID ordering doesn't match the idx token3 = doc[-1] token2 = doc[-2] token1 = doc[-1] token1, token2, token3 = doc assert token1 < token2 < token3 assert not token1 > token2 assert token2 > token1 assert token2 <= token3 assert token3 >= token1 def test_doc_api_getitem(en_tokenizer): text = "Give it back! He pleaded." tokens = en_tokenizer(text) assert tokens[0].text == "Give" assert tokens[-1].text == "." with pytest.raises(IndexError): tokens[len(tokens)] def to_str(span): return "/".join(token.text for token in span) span = tokens[1:1] assert not to_str(span) span = tokens[1:4] assert to_str(span) == "it/back/!" span = tokens[1:4:1] assert to_str(span) == "it/back/!" with pytest.raises(ValueError): tokens[1:4:2] with pytest.raises(ValueError): tokens[1:4:-1] span = tokens[-3:6] assert to_str(span) == "He/pleaded" span = tokens[4:-1] assert to_str(span) == "He/pleaded" span = tokens[-5:-3] assert to_str(span) == "back/!" span = tokens[5:4] assert span.start == span.end == 5 and not to_str(span) span = tokens[4:-3] assert span.start == span.end == 4 and not to_str(span) span = tokens[:] assert to_str(span) == "Give/it/back/!/He/pleaded/." span = tokens[4:] assert to_str(span) == "He/pleaded/." span = tokens[:4] assert to_str(span) == "Give/it/back/!" span = tokens[:-3] assert to_str(span) == "Give/it/back/!" span = tokens[-3:] assert to_str(span) == "He/pleaded/." span = tokens[4:50] assert to_str(span) == "He/pleaded/." span = tokens[-50:4] assert to_str(span) == "Give/it/back/!" span = tokens[-50:-40] assert span.start == span.end == 0 and not to_str(span) span = tokens[40:50] assert span.start == span.end == 7 and not to_str(span) span = tokens[1:4] assert span[0].orth_ == "it" subspan = span[:] assert to_str(subspan) == "it/back/!" subspan = span[:2] assert to_str(subspan) == "it/back" subspan = span[1:] assert to_str(subspan) == "back/!" subspan = span[:-1] assert to_str(subspan) == "it/back" subspan = span[-2:] assert to_str(subspan) == "back/!" subspan = span[1:2] assert to_str(subspan) == "back" subspan = span[-2:-1] assert to_str(subspan) == "back" subspan = span[-50:50] assert to_str(subspan) == "it/back/!" subspan = span[50:-50] assert subspan.start == subspan.end == 4 and not to_str(subspan) @pytest.mark.parametrize( "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "] ) def test_doc_api_serialize(en_tokenizer, text): tokens = en_tokenizer(text) new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes()) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] def test_doc_api_set_ents(en_tokenizer): text = "I use goggle chrone to surf the web" tokens = en_tokenizer(text) assert len(tokens.ents) == 0 tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)] assert len(list(tokens.ents)) == 1 assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0] assert tokens.ents[0].label_ == "PRODUCT" assert tokens.ents[0].start == 2 assert tokens.ents[0].end == 4 def test_doc_api_sents_empty_string(en_tokenizer): doc = en_tokenizer("") doc.is_parsed = True sents = list(doc.sents) assert len(sents) == 0 def test_doc_api_runtime_error(en_tokenizer): # Example that caused run-time error while parsing Reddit # fmt: off text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school" deps = ["nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "prep", "det", "amod", "pobj", "acl", "prep", "prep", "pobj", "", "nummod", "prep", "det", "amod", "pobj", "aux", "neg", "ROOT", "amod", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps) nps = [] for np in doc.noun_chunks: while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"): np = np[1:] if len(np) > 1: nps.append(np) with doc.retokenize() as retokenizer: for np in nps: attrs = { "tag": np.root.tag_, "lemma": np.text, "ent_type": np.root.ent_type_, } retokenizer.merge(np, attrs=attrs) def test_doc_api_right_edge(en_tokenizer): """Test for bug occurring from Unshift action, causing incorrect right edge""" # fmt: off text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue." heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1, -2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[6].text == "for" subtree = [w.text for w in doc[6].subtree] assert subtree == [ "for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ",", ] assert doc[6].right_edge.text == "," def test_doc_api_has_vector(): vocab = Vocab() vocab.reset_vectors(width=2) vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f")) doc = Doc(vocab, words=["kitten"]) assert doc.has_vector def test_doc_api_similarity_match(): doc = Doc(Vocab(), words=["a"]) assert doc.similarity(doc[0]) == 1.0 assert doc.similarity(doc.vocab["a"]) == 1.0 doc2 = Doc(doc.vocab, words=["a", "b", "c"]) with pytest.warns(ModelsWarning): assert doc.similarity(doc2[:1]) == 1.0 assert doc.similarity(doc2) == 0.0 @pytest.mark.parametrize( "sentence,heads,lca_matrix", [ ( "the lazy dog slept", [2, 1, 1, 0], numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]), ), ( "The lazy dog slept. The quick fox jumped", [2, 1, 1, 0, -1, 2, 1, 1, 0], numpy.array( [ [0, 2, 2, 3, 3, -1, -1, -1, -1], [2, 1, 2, 3, 3, -1, -1, -1, -1], [2, 2, 2, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 4, -1, -1, -1, -1], [-1, -1, -1, -1, -1, 5, 7, 7, 8], [-1, -1, -1, -1, -1, 7, 6, 7, 8], [-1, -1, -1, -1, -1, 7, 7, 7, 8], [-1, -1, -1, -1, -1, 8, 8, 8, 8], ] ), ), ], ) def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix): tokens = en_tokenizer(sentence) doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads) lca = doc.get_lca_matrix() assert (lca == lca_matrix).all() assert lca[1, 1] == 1 assert lca[0, 1] == 2 assert lca[1, 2] == 2 def test_doc_is_nered(en_vocab): words = ["I", "live", "in", "New", "York"] doc = Doc(en_vocab, words=words) assert not doc.is_nered doc.ents = [Span(doc, 3, 5, label="GPE")] assert doc.is_nered # Test creating doc from array with unknown values arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64") doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr) assert doc.is_nered # Test serialization new_doc = Doc(en_vocab).from_bytes(doc.to_bytes()) assert new_doc.is_nered