import pytest
from spacy.attrs import LEMMA
from spacy.vocab import Vocab
from spacy.tokens import Doc, Token


def test_doc_retokenize_merge(en_tokenizer):
    text = "WKRO played songs by the beach boys all night"
    attrs = {
        "tag": "NAMED",
        "lemma": "LEMMA",
        "ent_type": "TYPE",
        "morph": "Number=Plur",
    }
    doc = en_tokenizer(text)
    assert len(doc) == 9
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[4:7], attrs=attrs)
        retokenizer.merge(doc[7:9], attrs=attrs)
    assert len(doc) == 6
    assert doc[4].text == "the beach boys"
    assert doc[4].text_with_ws == "the beach boys "
    assert doc[4].tag_ == "NAMED"
    assert doc[4].morph_ == "Number=Plur"
    assert doc[5].text == "all night"
    assert doc[5].text_with_ws == "all night"
    assert doc[5].tag_ == "NAMED"
    assert doc[5].morph_ == "Number=Plur"


def test_doc_retokenize_merge_children(en_tokenizer):
    """Test that attachments work correctly after merging."""
    text = "WKRO played songs by the beach boys all night"
    attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"}
    doc = en_tokenizer(text)
    assert len(doc) == 9
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[4:7], attrs=attrs)
    for word in doc:
        if word.i < word.head.i:
            assert word in list(word.head.lefts)
        elif word.i > word.head.i:
            assert word in list(word.head.rights)


def test_doc_retokenize_merge_hang(en_tokenizer):
    text = "through North and South Carolina"
    doc = en_tokenizer(text)
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"})
        retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"})


def test_doc_retokenize_retokenizer(en_tokenizer):
    doc = en_tokenizer("WKRO played songs by the beach boys all night")
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[4:7])
    assert len(doc) == 7
    assert doc[4].text == "the beach boys"


def test_doc_retokenize_retokenizer_attrs(en_tokenizer):
    doc = en_tokenizer("WKRO played songs by the beach boys all night")
    # test both string and integer attributes and values
    attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]}
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[4:7], attrs=attrs)
    assert len(doc) == 7
    assert doc[4].text == "the beach boys"
    assert doc[4].lemma_ == "boys"
    assert doc[4].ent_type_ == "ORG"


def test_doc_retokenize_lex_attrs(en_tokenizer):
    """Test that lexical attributes can be changed (see #2390)."""
    doc = en_tokenizer("WKRO played beach boys songs")
    assert not any(token.is_stop for token in doc)
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True})
    assert doc[2].text == "beach boys"
    assert doc[2].lemma_ == "boys"
    assert doc[2].is_stop
    new_doc = Doc(doc.vocab, words=["beach boys"])
    assert new_doc[0].is_stop


def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
    text = "Los Angeles start."
    heads = [1, 2, 2, 2]
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
    assert len(doc) == 4
    assert doc[0].head.text == "Angeles"
    assert doc[1].head.text == "start"
    with doc.retokenize() as retokenizer:
        attrs = {"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}
        retokenizer.merge(doc[0:2], attrs=attrs)
    assert len(doc) == 3
    assert doc[0].text == "Los Angeles"
    assert doc[0].head.text == "start"
    assert doc[0].ent_type_ == "GPE"


def test_doc_retokenize_spans_merge_tokens_default_attrs(en_vocab):
    words = ["The", "players", "start", "."]
    heads = [1, 2, 2, 2]
    tags = ["DT", "NN", "VBZ", "."]
    pos = ["DET", "NOUN", "VERB", "PUNCT"]
    doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
    assert len(doc) == 4
    assert doc[0].text == "The"
    assert doc[0].tag_ == "DT"
    assert doc[0].pos_ == "DET"
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2])
    assert len(doc) == 3
    assert doc[0].text == "The players"
    assert doc[0].tag_ == "NN"
    assert doc[0].pos_ == "NOUN"
    doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
    assert len(doc) == 4
    assert doc[0].text == "The"
    assert doc[0].tag_ == "DT"
    assert doc[0].pos_ == "DET"
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2])
        retokenizer.merge(doc[2:4])
    assert len(doc) == 2
    assert doc[0].text == "The players"
    assert doc[0].tag_ == "NN"
    assert doc[0].pos_ == "NOUN"
    assert doc[1].text == "start ."
    assert doc[1].tag_ == "VBZ"
    assert doc[1].pos_ == "VERB"


def test_doc_retokenize_spans_merge_heads(en_vocab):
    words = ["I", "found", "a", "pilates", "class", "near", "work", "."]
    heads = [1, 1, 4, 6, 1, 4, 5, 1]
    doc = Doc(en_vocab, words=words, heads=heads)
    assert len(doc) == 8
    with doc.retokenize() as retokenizer:
        attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
        retokenizer.merge(doc[3:5], attrs=attrs)
    assert len(doc) == 7
    assert doc[0].head.i == 1
    assert doc[1].head.i == 1
    assert doc[2].head.i == 3
    assert doc[3].head.i == 1
    assert doc[4].head.i in [1, 3]
    assert doc[5].head.i == 4


def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
    text = "Los Angeles start."
    doc = en_tokenizer(text)
    with pytest.raises(ValueError):
        with doc.retokenize() as retokenizer:
            retokenizer.merge(
                doc[0:2],
                attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
            )
            retokenizer.merge(
                doc[0:1],
                attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
            )


def test_doc_retokenize_span_np_merges(en_tokenizer):
    text = "displaCy is a parse tool built with Javascript"
    heads = [1, 1, 4, 4, 1, 4, 5, 6]
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
    assert doc[4].head.i == 1
    with doc.retokenize() as retokenizer:
        attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
        retokenizer.merge(doc[2:5], attrs=attrs)
    assert doc[2].head.i == 1

    text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
    heads = [1, 1, 10, 7, 3, 3, 7, 10, 9, 10, 1, 10, 11, 12, 13, 13, 1]
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
    with doc.retokenize() as retokenizer:
        for ent in doc.ents:
            attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
            retokenizer.merge(ent, attrs=attrs)

    text = "One test with entities like New York City so the ents list is not void"
    heads = [1, 1, 1, 2, 3, 6, 7, 4, 12, 11, 11, 12, 1, 12, 12]
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
    with doc.retokenize() as retokenizer:
        for ent in doc.ents:
            retokenizer.merge(ent)


def test_doc_retokenize_spans_entity_merge(en_tokenizer):
    # fmt: off
    text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
    heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
    tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
    ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
    # fmt: on
    tokens = en_tokenizer(text)
    doc = Doc(
        tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
    )
    assert len(doc) == 17
    with doc.retokenize() as retokenizer:
        for ent in doc.ents:
            ent_type = max(w.ent_type_ for w in ent)
            attrs = {"lemma": ent.root.lemma_, "ent_type": ent_type}
            retokenizer.merge(ent, attrs=attrs)
    # check looping is ok
    assert len(doc) == 15


def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
    # Test entity IOB stays consistent after merging
    words = ["a", "b", "c", "d", "e"]
    doc = Doc(Vocab(), words=words)
    doc.ents = [
        (doc.vocab.strings.add("ent-abc"), 0, 3),
        (doc.vocab.strings.add("ent-d"), 3, 4),
    ]
    assert doc[0].ent_iob_ == "B"
    assert doc[1].ent_iob_ == "I"
    assert doc[2].ent_iob_ == "I"
    assert doc[3].ent_iob_ == "B"
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2])
    assert len(doc) == len(words) - 1
    assert doc[0].ent_iob_ == "B"
    assert doc[1].ent_iob_ == "I"

    # Test that IOB stays consistent with provided IOB
    words = ["a", "b", "c", "d", "e"]
    doc = Doc(Vocab(), words=words)
    with doc.retokenize() as retokenizer:
        attrs = {"ent_type": "ent-abc", "ent_iob": 1}
        retokenizer.merge(doc[0:3], attrs=attrs)
        retokenizer.merge(doc[3:5], attrs=attrs)
    assert doc[0].ent_iob_ == "B"
    assert doc[1].ent_iob_ == "I"

    # if no parse/heads, the first word in the span is the root and provides
    # default values
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
    doc = Doc(Vocab(), words=words)
    doc.ents = [
        (doc.vocab.strings.add("ent-de"), 3, 5),
        (doc.vocab.strings.add("ent-fg"), 5, 7),
    ]
    assert doc[3].ent_iob_ == "B"
    assert doc[4].ent_iob_ == "I"
    assert doc[5].ent_iob_ == "B"
    assert doc[6].ent_iob_ == "I"
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[2:4])
        retokenizer.merge(doc[4:6])
        retokenizer.merge(doc[7:9])
    assert len(doc) == 6
    assert doc[3].ent_iob_ == "B"
    assert doc[3].ent_type_ == "ent-de"
    assert doc[4].ent_iob_ == "B"
    assert doc[4].ent_type_ == "ent-fg"

    # if there is a parse, span.root provides default values
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
    heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
    ents = [("ent-de", 3, 5), ("ent-fg", 5, 7)]
    deps = ["dep"] * len(words)
    en_vocab.strings.add("ent-de")
    en_vocab.strings.add("ent-fg")
    en_vocab.strings.add("dep")
    doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
    assert doc[2:4].root == doc[3]  # root of 'c d' is d
    assert doc[4:6].root == doc[4]  # root is 'e f' is e
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[2:4])
        retokenizer.merge(doc[4:6])
        retokenizer.merge(doc[7:9])
    assert len(doc) == 6
    assert doc[2].ent_iob_ == "B"
    assert doc[2].ent_type_ == "ent-de"
    assert doc[3].ent_iob_ == "I"
    assert doc[3].ent_type_ == "ent-de"
    assert doc[4].ent_iob_ == "B"
    assert doc[4].ent_type_ == "ent-fg"

    # check that B is preserved if span[start] is B
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
    heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
    ents = [("ent-de", 3, 5), ("ent-de", 5, 7)]
    deps = ["dep"] * len(words)
    doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[3:5])
        retokenizer.merge(doc[5:7])
    assert len(doc) == 7
    assert doc[3].ent_iob_ == "B"
    assert doc[3].ent_type_ == "ent-de"
    assert doc[4].ent_iob_ == "B"
    assert doc[4].ent_type_ == "ent-de"


def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
    # fmt: off
    text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
    heads = [1, 2, 2, 4, 2, 4, 4, 2, 9, 9, 9, 10, 9, 9, 15, 13, 9]
    deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
            'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
            'compound', 'dobj', 'punct']
    # fmt: on
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
    sent1, sent2 = list(doc.sents)
    init_len = len(sent1)
    init_len2 = len(sent2)
    with doc.retokenize() as retokenizer:
        attrs = {"lemma": "none", "ent_type": "none"}
        retokenizer.merge(doc[0:2], attrs=attrs)
        retokenizer.merge(doc[-2:], attrs=attrs)
    assert len(sent1) == init_len - 1
    assert len(sent2) == init_len2 - 1


def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
    # fmt: off
    text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
    heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12]
    deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
            "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
            "dobj"]
    # fmt: on
    tokens = en_tokenizer(text)
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
    sent1 = list(doc.sents)[0]
    init_len = len(list(sent1.root.subtree))
    with doc.retokenize() as retokenizer:
        attrs = {"lemma": "none", "ent_type": "none"}
        retokenizer.merge(doc[0:2], attrs=attrs)
    assert len(list(sent1.root.subtree)) == init_len - 1


def test_doc_retokenize_merge_extension_attrs(en_vocab):
    Token.set_extension("a", default=False, force=True)
    Token.set_extension("b", default="nothing", force=True)
    doc = Doc(en_vocab, words=["hello", "world", "!"])
    # Test regular merging
    with doc.retokenize() as retokenizer:
        attrs = {"lemma": "hello world", "_": {"a": True, "b": "1"}}
        retokenizer.merge(doc[0:2], attrs=attrs)
    assert doc[0].lemma_ == "hello world"
    assert doc[0]._.a is True
    assert doc[0]._.b == "1"
    # Test bulk merging
    doc = Doc(en_vocab, words=["hello", "world", "!", "!"])
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2], attrs={"_": {"a": True, "b": "1"}})
        retokenizer.merge(doc[2:4], attrs={"_": {"a": None, "b": "2"}})
    assert doc[0]._.a is True
    assert doc[0]._.b == "1"
    assert doc[1]._.a is None
    assert doc[1]._.b == "2"


@pytest.mark.parametrize("underscore_attrs", [{"a": "x"}, {"b": "x"}, {"c": "x"}, [1]])
def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs):
    Token.set_extension("a", getter=lambda x: x, force=True)
    Token.set_extension("b", method=lambda x: x, force=True)
    doc = Doc(en_vocab, words=["hello", "world", "!"])
    attrs = {"_": underscore_attrs}
    with pytest.raises(ValueError):
        with doc.retokenize() as retokenizer:
            retokenizer.merge(doc[0:2], attrs=attrs)


def test_doc_retokenizer_merge_lex_attrs(en_vocab):
    """Test that retokenization also sets attributes on the lexeme if they're
    lexical attributes. For example, if a user sets IS_STOP, it should mean that
    "all tokens with that lexeme" are marked as a stop word, so the ambiguity
    here is acceptable. Also see #2390.
    """
    # Test regular merging
    doc = Doc(en_vocab, words=["hello", "world", "!"])
    assert not any(t.is_stop for t in doc)
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2], attrs={"lemma": "hello world", "is_stop": True})
    assert doc[0].lemma_ == "hello world"
    assert doc[0].is_stop
    # Test bulk merging
    doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
    assert not any(t.like_num for t in doc)
    assert not any(t.is_stop for t in doc)
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2], attrs={"like_num": True})
        retokenizer.merge(doc[2:4], attrs={"is_stop": True})
    assert doc[0].like_num
    assert doc[1].is_stop
    assert not doc[0].is_stop
    assert not doc[1].like_num


def test_retokenize_skip_duplicates(en_vocab):
    """Test that the retokenizer automatically skips duplicate spans instead
    of complaining about overlaps. See #3687."""
    doc = Doc(en_vocab, words=["hello", "world", "!"])
    with doc.retokenize() as retokenizer:
        retokenizer.merge(doc[0:2])
        retokenizer.merge(doc[0:2])
    assert len(doc) == 2
    assert doc[0].text == "hello world"


def test_retokenize_disallow_zero_length(en_vocab):
    doc = Doc(en_vocab, words=["hello", "world", "!"])
    with pytest.raises(ValueError):
        with doc.retokenize() as retokenizer:
            retokenizer.merge(doc[1:1])