from typing import Callable from spacy import util from spacy.util import ensure_path, registry, load_model_from_config from spacy.kb import KnowledgeBase from thinc.api import Config from ..util import make_tempdir from numpy import zeros def test_serialize_kb_disk(en_vocab): # baseline assertions kb1 = _get_dummy_kb(en_vocab) _check_kb(kb1) # dumping to file & loading back in with make_tempdir() as d: dir_path = ensure_path(d) if not dir_path.exists(): dir_path.mkdir() file_path = dir_path / "kb" kb1.to_disk(str(file_path)) kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3) kb2.from_disk(str(file_path)) # final assertions _check_kb(kb2) def _get_dummy_kb(vocab): kb = KnowledgeBase(vocab, entity_vector_length=3) kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3]) kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0]) kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7]) kb.add_entity(entity="Q44", freq=342, entity_vector=[4, 4, 4]) kb.add_alias(alias="double07", entities=["Q17", "Q007"], probabilities=[0.1, 0.9]) kb.add_alias( alias="guy", entities=["Q53", "Q007", "Q17", "Q44"], probabilities=[0.3, 0.3, 0.2, 0.1], ) kb.add_alias(alias="random", entities=["Q007"], probabilities=[1.0]) return kb def _check_kb(kb): # check entities assert kb.get_size_entities() == 4 for entity_string in ["Q53", "Q17", "Q007", "Q44"]: assert entity_string in kb.get_entity_strings() for entity_string in ["", "Q0"]: assert entity_string not in kb.get_entity_strings() # check aliases assert kb.get_size_aliases() == 3 for alias_string in ["double07", "guy", "random"]: assert alias_string in kb.get_alias_strings() for alias_string in ["nothingness", "", "randomnoise"]: assert alias_string not in kb.get_alias_strings() # check candidates & probabilities candidates = sorted(kb.get_alias_candidates("double07"), key=lambda x: x.entity_) assert len(candidates) == 2 assert candidates[0].entity_ == "Q007" assert 6.999 < candidates[0].entity_freq < 7.01 assert candidates[0].entity_vector == [0, 0, 7] assert candidates[0].alias_ == "double07" assert 0.899 < candidates[0].prior_prob < 0.901 assert candidates[1].entity_ == "Q17" assert 1.99 < candidates[1].entity_freq < 2.01 assert candidates[1].entity_vector == [7, 1, 0] assert candidates[1].alias_ == "double07" assert 0.099 < candidates[1].prior_prob < 0.101 def test_serialize_subclassed_kb(): """Check that IO of a custom KB works fine as part of an EL pipe.""" config_string = """ [nlp] lang = "en" pipeline = ["entity_linker"] [components] [components.entity_linker] factory = "entity_linker" [initialize] [initialize.components] [initialize.components.entity_linker] [initialize.components.entity_linker.kb_loader] @misc = "spacy.CustomKB.v1" entity_vector_length = 342 custom_field = 666 """ class SubKnowledgeBase(KnowledgeBase): def __init__(self, vocab, entity_vector_length, custom_field): super().__init__(vocab, entity_vector_length) self.custom_field = custom_field @registry.misc("spacy.CustomKB.v1") def custom_kb( entity_vector_length: int, custom_field: int ) -> Callable[["Vocab"], KnowledgeBase]: def custom_kb_factory(vocab): kb = SubKnowledgeBase( vocab=vocab, entity_vector_length=entity_vector_length, custom_field=custom_field, ) kb.add_entity("random_entity", 0.0, zeros(entity_vector_length)) return kb return custom_kb_factory config = Config().from_str(config_string) nlp = load_model_from_config(config, auto_fill=True) nlp.initialize() entity_linker = nlp.get_pipe("entity_linker") assert type(entity_linker.kb) == SubKnowledgeBase assert entity_linker.kb.entity_vector_length == 342 assert entity_linker.kb.custom_field == 666 # Make sure the custom KB is serialized correctly with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) entity_linker2 = nlp2.get_pipe("entity_linker") # After IO, the KB is the standard one assert type(entity_linker2.kb) == KnowledgeBase assert entity_linker2.kb.entity_vector_length == 342 assert not hasattr(entity_linker2.kb, "custom_field")