//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 include ../_includes/_mixins p | We're very excited to finally introduce spaCy v2.0! On this page, you'll | find a summary of the new features, information on the backwards | incompatibilities, including a handy overview of what's been renamed or | deprecated. To help you make the most of v2.0, we also | #[strong re-wrote almost all of the usage guides and API docs], and added | more real-world examples. If you're new to spaCy, or just want to brush | up on some NLP basics and the details of the library, check out | the #[+a("/usage/spacy-101") spaCy 101 guide] that explains the most | important concepts with examples and illustrations. +h(2, "summary") Summary +grid.o-no-block +grid-col("half") p This release features | entirely new #[strong deep learning-powered models] for spaCy's tagger, | parser and entity recognizer. The new models are #[strong 20x smaller] | than the linear models that have powered spaCy until now: from 300 MB to | only 15 MB. p | We've also made several usability improvements that are | particularly helpful for #[strong production deployments]. spaCy | v2 now fully supports the Pickle protocol, making it easy to use | spaCy with #[+a("https://spark.apache.org/") Apache Spark]. The | string-to-integer mapping is #[strong no longer stateful], making | it easy to reconcile annotations made in different processes. | Models are smaller and use less memory, and the APIs for serialization | are now much more consistent. +table-of-contents +item #[+a("#summary") Summary] +item #[+a("#features") New features] +item #[+a("#features-models") Neural network models] +item #[+a("#features-pipelines") Improved processing pipelines] +item #[+a("#features-text-classification") Text classification] +item #[+a("#features-hash-ids") Hash values instead of integer IDs] +item #[+a("#features-serializer") Saving, loading and serialization] +item #[+a("#features-displacy") displaCy visualizer] +item #[+a("#features-language") Language data and lazy loading] +item #[+a("#features-matcher") Revised matcher API and phrase matcher] +item #[+a("#incompat") Backwards incompatibilities] +item #[+a("#migrating") Migrating from spaCy v1.x] +item #[+a("#benchmarks") Benchmarks] p | The main usability improvements you'll notice in spaCy v2.0 are around | #[strong defining, training and loading your own models] and components. | The new neural network models make it much easier to train a model from | scratch, or update an existing model with a few examples. In v1.x, the | statistical models depended on the state of the #[code Vocab]. If you | taught the model a new word, you would have to save and load a lot of | data — otherwise the model wouldn't correctly recall the features of your | new example. That's no longer the case. p | Due to some clever use of hashing, the statistical models | #[strong never change size], even as they learn new vocabulary items. | The whole pipeline is also now fully differentiable. Even if you don't | have explicitly annotated data, you can update spaCy using all the | #[strong latest deep learning tricks] like adversarial training, noise | contrastive estimation or reinforcement learning. +section("features") +h(2, "features") New features p | This section contains an overview of the most important | #[strong new features and improvements]. The #[+a("/api") API docs] | include additional deprecation notes. New methods and functions that | were introduced in this version are marked with a #[+tag-new(2)] tag. +h(3, "features-models") Convolutional neural network models +aside-code("Example", "bash"). spacy download en # default English model spacy download de # default German model spacy download fr # default French model spacy download es # default Spanish model spacy download xx_ent_wiki_sm # multi-language NER p | spaCy v2.0 features new neural models for tagging, | parsing and entity recognition. The models have | been designed and implemented from scratch specifically for spaCy, to | give you an unmatched balance of speed, size and accuracy. The new | models are #[strong 10× smaller], #[strong 20% more accurate], | and #[strong just as fast] as the previous generation. | #[strong GPU usage] is now supported via | #[+a("http://chainer.org") Chainer]'s CuPy module. +infobox | #[+label-inline Usage:] #[+a("/models") Models directory], | #[+a("/usage/#gpu") Using spaCy with GPU] +h(3, "features-pipelines") Improved processing pipelines +aside-code("Example"). # Set custom attributes Doc.set_extension('my_attr', default=False) Token.set_extension('my_attr', getter=my_token_getter) assert doc._.my_attr, token._.my_attr # Add components to the pipeline my_component = lambda doc: doc nlp.add_pipe(my_component) p | It's now much easier to #[strong customise the pipeline] with your own | components: functions that receive a #[code Doc] object, modify and | return it. Extensions let you write any | #[strong attributes, properties and methods] to the #[code Doc], | #[code Token] and #[code Span]. You can add data, implement new | features, integrate other libraries with spaCy or plug in your own | machine learning models. +image include ../assets/img/pipeline.svg +infobox | #[+label-inline API:] #[+api("language") #[code Language]], | #[+api("doc#set_extension") #[code Doc.set_extension]], | #[+api("span#set_extension") #[code Span.set_extension]], | #[+api("token#set_extension") #[code Token.set_extension]] | #[+label-inline Usage:] | #[+a("/usage/processing-pipelines") Processing pipelines] | #[+label-inline Code:] | #[+src("/usage/examples#section-pipeline") Pipeline examples] +h(3, "features-text-classification") Text classification +aside-code("Example"). from spacy.lang.en import English nlp = English(pipeline=['tensorizer', 'tagger', 'textcat']) p | spaCy v2.0 lets you add text categorization models to spaCy pipelines. | The model supports classification with multiple, non-mutually exclusive | labels – so multiple labels can apply at once. You can change the model | architecture rather easily, but by default, the #[code TextCategorizer] | class uses a convolutional neural network to assign position-sensitive | vectors to each word in the document. +infobox | #[+label-inline API:] #[+api("textcategorizer") #[code TextCategorizer]], | #[+api("doc#attributes") #[code Doc.cats]], | #[+api("goldparse#attributes") #[code GoldParse.cats]]#[br] | #[+label-inline Usage:] #[+a("/usage/text-classification") Text classification] +h(3, "features-hash-ids") Hash values instead of integer IDs +aside-code("Example"). doc = nlp(u'I love coffee') assert doc.vocab.strings[u'coffee'] == 3197928453018144401 assert doc.vocab.strings[3197928453018144401] == u'coffee' beer_hash = doc.vocab.strings.add(u'beer') assert doc.vocab.strings[u'beer'] == beer_hash assert doc.vocab.strings[beer_hash] == u'beer' p | The #[+api("stringstore") #[code StringStore]] now resolves all strings | to hash values instead of integer IDs. This means that the string-to-int | mapping #[strong no longer depends on the vocabulary state], making a lot | of workflows much simpler, especially during training. Unlike integer IDs | in spaCy v1.x, hash values will #[strong always match] – even across | models. Strings can now be added explicitly using the new | #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash | is available via #[code token.orth]. +infobox | #[+label-inline API:] #[+api("stringstore") #[code StringStore]] | #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101] +h(3, "features-serializer") Saving, loading and serialization +aside-code("Example"). nlp = spacy.load('en') # shortcut link nlp = spacy.load('en_core_web_sm') # package nlp = spacy.load('/path/to/en') # unicode path nlp = spacy.load(Path('/path/to/en')) # pathlib Path nlp.to_disk('/path/to/nlp') nlp = English().from_disk('/path/to/nlp') p | spay's serialization API has been made consistent across classes and | objects. All container classes, i.e. #[code Language], #[code Doc], | #[code Vocab] and #[code StringStore] now have a #[code to_bytes()], | #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method | that supports the Pickle protocol. p | The improved #[code spacy.load] makes loading models easier and more | transparent. You can load a model by supplying its | #[+a("/usage/models#usage") shortcut link], the name of an installed | #[+a("/usage/saving-loading#generating") model package] or a path. | The #[code Language] class to initialise will be determined based on the | model's settings. For a blank language, you can import the class directly, | e.g. #[code from spacy.lang.en import English]. +infobox | #[+label-inline API:] #[+api("spacy#load") #[code spacy.load]] | #[+label-inline Usage:] #[+a("/usage/saving-loading") Saving and loading] +h(3, "features-displacy") displaCy visualizer with Jupyter support +aside-code("Example"). from spacy import displacy doc = nlp(u'This is a sentence about Facebook.') displacy.serve(doc, style='dep') # run the web server html = displacy.render(doc, style='ent') # generate HTML p | Our popular dependency and named entity visualizers are now an official | part of the spaCy library. displaCy can run a simple web server, or | generate raw HTML markup or SVG files to be exported. You can pass in one | or more docs, and customise the style. displaCy also auto-detects whether | you're running #[+a("https://jupyter.org") Jupyter] and will render the | visualizations in your notebook. +infobox | #[+label-inline API:] #[+api("displacy") #[code displacy]] | #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizing spaCy] +h(3, "features-language") Improved language data and lazy loading p | Language-specfic data now lives in its own submodule, #[code spacy.lang]. | Languages are lazy-loaded, i.e. only loaded when you import a | #[code Language] class, or load a model that initialises one. This allows | languages to contain more custom data, e.g. lemmatizer lookup tables, or | complex regular expressions. The language data has also been tidied up | and simplified. spaCy now also supports simple lookup-based lemmatization. +infobox | #[+label-inline API:] #[+api("language") #[code Language]] | #[+label-inline Code:] #[+src(gh("spaCy", "spacy/lang")) #[code spacy/lang]] | #[+label-inline Usage:] #[+a("/usage/adding-languages") Adding languages] +h(3, "features-matcher") Revised matcher API and phrase matcher +aside-code("Example"). from spacy.matcher import Matcher, PhraseMatcher matcher = Matcher(nlp.vocab) matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}]) phrasematcher = PhraseMatcher(nlp.vocab) phrasematcher.add('OBAMA', None, nlp(u"Barack Obama")) p | Patterns can now be added to the matcher by calling | #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional | callback function to be invoked on each match, and one or more patterns. | This allows you to write powerful, pattern-specific logic using only one | matcher. For example, you might only want to merge some entity types, | and set custom flags for other matched patterns. The new | #[+api("phrasematcher") #[code PhraseMatcher]] lets you efficiently | match very large terminology lists using #[code Doc] objects as match | patterns. +infobox | #[+label-inline API:] #[+api("matcher") #[code Matcher]], | #[+api("phrasematcher") #[code PhraseMatcher]] | #[+label-inline Usage:] #[+a("/usage/rule-based-matching") Rule-based matching] +section("incompat") +h(2, "incompat") Backwards incompatibilities +table(["Old", "New"]) +row +cell | #[code spacy.en] | #[code spacy.xx] +cell | #[code spacy.lang.en] | #[code spacy.lang.xx] +row +cell #[code orth] +cell #[code lang.xx.lex_attrs] +row +cell #[code syntax.iterators] +cell #[code lang.xx.syntax_iterators] +row +cell #[code Language.save_to_directory] +cell #[+api("language#to_disk") #[code Language.to_disk]] +row +cell #[code Language.create_make_doc] +cell #[+api("language#attributes") #[code Language.tokenizer]] +row +cell | #[code Vocab.load] | #[code Vocab.load_lexemes] +cell | #[+api("vocab#from_disk") #[code Vocab.from_disk]] | #[+api("vocab#from_bytes") #[code Vocab.from_bytes]] +row +cell | #[code Vocab.dump] +cell | #[+api("vocab#to_disk") #[code Vocab.to_disk]]#[br] | #[+api("vocab#to_bytes") #[code Vocab.to_bytes]] +row +cell | #[code Vocab.load_vectors] | #[code Vocab.load_vectors_from_bin_loc] +cell | #[+api("vectors#from_disk") #[code Vectors.from_disk]] | #[+api("vectors#from_bytes") #[code Vectors.from_bytes]] +row +cell | #[code Vocab.dump_vectors] +cell | #[+api("vectors#to_disk") #[code Vectors.to_disk]] | #[+api("vectors#to_bytes") #[code Vectors.to_bytes]] +row +cell | #[code StringStore.load] +cell | #[+api("stringstore#from_disk") #[code StringStore.from_disk]] | #[+api("stringstore#from_bytes") #[code StringStore.from_bytes]] +row +cell | #[code StringStore.dump] +cell | #[+api("stringstore#to_disk") #[code StringStore.to_disk]] | #[+api("stringstore#to_bytes") #[code StringStore.to_bytes]] +row +cell #[code Tokenizer.load] +cell | #[+api("tokenizer#from_disk") #[code Tokenizer.from_disk]] | #[+api("tokenizer#from_bytes") #[code Tokenizer.from_bytes]] +row +cell #[code Tagger.load] +cell | #[+api("tagger#from_disk") #[code Tagger.from_disk]] | #[+api("tagger#from_bytes") #[code Tagger.from_bytes]] +row +cell #[code DependencyParser.load] +cell | #[+api("dependencyparser#from_disk") #[code DependencyParser.from_disk]] | #[+api("dependencyparser#from_bytes") #[code DependencyParser.from_bytes]] +row +cell #[code EntityRecognizer.load] +cell | #[+api("entityrecognizer#from_disk") #[code EntityRecognizer.from_disk]] | #[+api("entityrecognizer#from_bytes") #[code EntityRecognizer.from_bytes]] +row +cell #[code Matcher.load] +cell - +row +cell | #[code Matcher.add_pattern] | #[code Matcher.add_entity] +cell #[+api("matcher#add") #[code Matcher.add]] +row +cell #[code Matcher.get_entity] +cell #[+api("matcher#get") #[code Matcher.get]] +row +cell #[code Matcher.has_entity] +cell #[+api("matcher#contains") #[code Matcher.__contains__]] +row +cell #[code Doc.read_bytes] +cell | #[+api("doc#to_bytes") #[code Doc.to_bytes]] | #[+api("doc#from_bytes") #[code Doc.from_bytes]] | #[+api("doc#to_disk") #[code Doc.to_disk]] | #[+api("doc#from_disk") #[code Doc.from_disk]] +row +cell #[code Token.is_ancestor_of] +cell #[+api("token#is_ancestor") #[code Token.is_ancestor]] +row +cell #[code cli.model] +cell - +section("migrating") +h(2, "migrating") Migrating from spaCy 1.x p | Because we'e made so many architectural changes to the library, we've | tried to #[strong keep breaking changes to a minimum]. A lot of projects | follow the philosophy that if you're going to break anything, you may as | well break everything. We think migration is easier if there's a logic to | what has changed. p | We've therefore followed a policy of avoiding breaking changes to the | #[code Doc], #[code Span] and #[code Token] objects. This way, you can | focus on only migrating the code that does training, loading and | serialization — in other words, code that works with the #[code nlp] | object directly. Code that uses the annotations should continue to work. +infobox("Important note") | If you've trained your own models, keep in mind that your train and | runtime inputs must match. This means you'll have to | #[strong retrain your models] with spaCy v2.0. +h(3, "migrating-saving-loading") Saving, loading and serialization p | Double-check all calls to #[code spacy.load()] and make sure they don't | use the #[code path] keyword argument. If you're only loading in binary | data and not a model package that can construct its own #[code Language] | class and pipeline, you should now use the | #[+api("language#from_disk") #[code Language.from_disk()]] method. +code-new. nlp = spacy.load('/model') nlp = English().from_disk('/model/data') +code-old nlp = spacy.load('en', path='/model') p | Review all other code that writes state to disk or bytes. | All containers, now share the same, consistent API for saving and | loading. Replace saving with #[code to_disk()] or #[code to_bytes()], and | loading with #[code from_disk()] and #[code from_bytes()]. +code-new. nlp.to_disk('/model') nlp.vocab.to_disk('/vocab') +code-old. nlp.save_to_directory('/model') nlp.vocab.dump('/vocab') p | If you've trained models with input from v1.x, you'll need to | #[strong retrain them] with spaCy v2.0. All previous models will not | be compatible with the new version. +h(3, "migrating-strings") Strings and hash values p | The change from integer IDs to hash values may not actually affect your | code very much. However, if you're adding strings to the vocab manually, | you now need to call #[+api("stringstore#add") #[code StringStore.add()]] | explicitly. You can also now be sure that the string-to-hash mapping will | always match across vocabularies. +code-new. nlp.vocab.strings.add(u'coffee') nlp.vocab.strings[u'coffee'] # 3197928453018144401 other_nlp.vocab.strings[u'coffee'] # 3197928453018144401 +code-old. nlp.vocab.strings[u'coffee'] # 3672 other_nlp.vocab.strings[u'coffee'] # 40259 +h(3, "migrating-languages") Processing pipelines and language data p | If you're importing language data or #[code Language] classes, make sure | to change your import statements to import from #[code spacy.lang]. If | you've added your own custom language, it needs to be moved to | #[code spacy/lang/xx] and adjusted accordingly. +code-new from spacy.lang.en import English +code-old from spacy.en import English p | If you've been using custom pipeline components, check out the new | guide on #[+a("/usage/language-processing-pipelines") processing pipelines]. | Appending functions to the pipeline still works – but the | #[+api("language#add_pipe") #[code add_pipe]] methods now makes this | much more convenient. Components of the processing pipeline can now | be disabled by passing a list of their names to the #[code disable] | keyword argument on load, or by simply demoving them from the | pipeline alltogether. +code-new. nlp = spacy.load('en', disable=['tagger', 'ner']) nlp.remove_pipe('parser') +code-old. nlp = spacy.load('en', tagger=False, entity=False) doc = nlp(u"I don't want parsed", parse=False) +h(3, "migrating-matcher") Adding patterns and callbacks to the matcher p | If you're using the matcher, you can now add patterns in one step. This | should be easy to update – simply merge the ID, callback and patterns | into one call to #[+api("matcher#add") #[code Matcher.add()]]. +code-new. matcher.add('GoogleNow', merge_phrases, [{ORTH: 'Google'}, {ORTH: 'Now'}]) +code-old. matcher.add_entity('GoogleNow', on_match=merge_phrases) matcher.add_pattern('GoogleNow', [{ORTH: 'Google'}, {ORTH: 'Now'}]) p | If you've been using #[strong acceptor functions], you'll need to move | this logic into the | #[+a("/usage/rule-based-matching#on_match") #[code on_match] callbacks]. | The callback function is invoked on every match and will give you access to | the doc, the index of the current match and all total matches. This lets | you both accept or reject the match, and define the actions to be | triggered. +section("benchmarks") +h(2, "benchmarks") Benchmarks include _facts-figures/_benchmarks-models