from spacy.language import Language from spacy.pipe_analysis import get_assigns_for_attr, get_requires_for_attr from spacy.pipe_analysis import validate_attrs, count_pipeline_interdependencies from mock import Mock import pytest def test_component_decorator_assigns(): @Language.component("c1", assigns=["token.tag", "doc.tensor"]) def test_component1(doc): return doc @Language.component( "c2", requires=["token.tag", "token.pos"], assigns=["token.lemma", "doc.tensor"] ) def test_component2(doc): return doc @Language.component( "c3", requires=["token.lemma"], assigns=["token._.custom_lemma"] ) def test_component3(doc): return doc assert Language.has_factory("c1") assert Language.has_factory("c2") assert Language.has_factory("c3") nlp = Language() nlp.add_pipe("c1") nlp.add_pipe("c2") problems = nlp.analyze_pipes(no_print=True)["problems"] assert problems["c2"] == ["token.pos"] nlp.add_pipe("c3") assert get_assigns_for_attr(nlp, "doc.tensor") == ["c1", "c2"] nlp.add_pipe("c1", name="c4") test_component4_meta = nlp.get_pipe_meta("c1") assert test_component4_meta.factory == "c1" assert nlp.pipe_names == ["c1", "c2", "c3", "c4"] assert not Language.has_factory("c4") assert nlp.pipe_factories["c1"] == "c1" assert nlp.pipe_factories["c4"] == "c1" assert get_assigns_for_attr(nlp, "doc.tensor") == ["c1", "c2", "c4"] assert get_requires_for_attr(nlp, "token.pos") == ["c2"] assert nlp("hello world") def test_component_factories_class_func(): """Test that class components can implement a from_nlp classmethod that gives them access to the nlp object and config via the factory.""" class TestComponent5: def __call__(self, doc): return doc mock = Mock() mock.return_value = TestComponent5() def test_componen5_factory(nlp, foo: str = "bar", name="c5"): return mock(nlp, foo=foo) Language.factory("c5", func=test_componen5_factory) assert Language.has_factory("c5") nlp = Language() nlp.add_pipe("c5", config={"foo": "bar"}) assert nlp("hello world") mock.assert_called_once_with(nlp, foo="bar") def test_analysis_validate_attrs_valid(): attrs = ["doc.sents", "doc.ents", "token.tag", "token._.xyz", "span._.xyz"] assert validate_attrs(attrs) for attr in attrs: assert validate_attrs([attr]) with pytest.raises(ValueError): validate_attrs(["doc.sents", "doc.xyz"]) @pytest.mark.parametrize( "attr", [ "doc", "doc_ents", "doc.xyz", "token.xyz", "token.tag_", "token.tag.xyz", "token._.xyz.abc", "span.label", ], ) def test_analysis_validate_attrs_invalid(attr): with pytest.raises(ValueError): validate_attrs([attr]) def test_analysis_validate_attrs_remove_pipe(): """Test that attributes are validated correctly on remove.""" @Language.component("pipe_analysis_c6", assigns=["token.tag"]) def c1(doc): return doc @Language.component("pipe_analysis_c7", requires=["token.pos"]) def c2(doc): return doc nlp = Language() nlp.add_pipe("pipe_analysis_c6") nlp.add_pipe("pipe_analysis_c7") problems = nlp.analyze_pipes(no_print=True)["problems"] assert problems["pipe_analysis_c7"] == ["token.pos"] nlp.remove_pipe("pipe_analysis_c7") problems = nlp.analyze_pipes(no_print=True)["problems"] assert all(p == [] for p in problems.values()) def test_pipe_interdependencies(): prefix = "test_pipe_interdependencies" @Language.component(f"{prefix}.fancifier", assigns=("doc._.fancy",)) def fancifier(doc): return doc @Language.component(f"{prefix}.needer", requires=("doc._.fancy",)) def needer(doc): return doc nlp = Language() nlp.add_pipe(f"{prefix}.fancifier") nlp.add_pipe(f"{prefix}.needer") counts = count_pipeline_interdependencies(nlp) assert counts == [1, 0]