from typing import List import pytest from thinc.api import fix_random_seed, Adam, set_dropout_rate from thinc.api import Ragged, reduce_mean, Logistic, chain, Relu from numpy.testing import assert_array_equal, assert_array_almost_equal import numpy from spacy.ml.models import build_Tok2Vec_model, MultiHashEmbed, MaxoutWindowEncoder from spacy.ml.models import build_bow_text_classifier, build_simple_cnn_text_classifier from spacy.ml.models import build_spancat_model from spacy.ml.staticvectors import StaticVectors from spacy.ml.extract_spans import extract_spans, _get_span_indices from spacy.lang.en import English from spacy.lang.en.examples import sentences as EN_SENTENCES def get_textcat_bow_kwargs(): return { "exclusive_classes": True, "ngram_size": 1, "no_output_layer": False, "nO": 34, } def get_textcat_cnn_kwargs(): return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13} def get_all_params(model): params = [] for node in model.walk(): for name in node.param_names: params.append(node.get_param(name).ravel()) return node.ops.xp.concatenate(params) def get_docs(): nlp = English() return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)])) def get_gradient(model, Y): if isinstance(Y, model.ops.xp.ndarray): dY = model.ops.alloc(Y.shape, dtype=Y.dtype) dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape) return dY elif isinstance(Y, List): return [get_gradient(model, y) for y in Y] else: raise ValueError(f"Could not get gradient for type {type(Y)}") def get_tok2vec_kwargs(): # This actually creates models, so seems best to put it in a function. return { "embed": MultiHashEmbed( width=32, rows=[500, 500, 500], attrs=["NORM", "PREFIX", "SHAPE"], include_static_vectors=False, ), "encode": MaxoutWindowEncoder( width=32, depth=2, maxout_pieces=2, window_size=1 ), } def test_tok2vec(): return build_Tok2Vec_model(**get_tok2vec_kwargs()) def test_multi_hash_embed(): embed = MultiHashEmbed( width=32, rows=[500, 500, 500], attrs=["NORM", "PREFIX", "SHAPE"], include_static_vectors=False, ) hash_embeds = [node for node in embed.walk() if node.name == "hashembed"] assert len(hash_embeds) == 3 # Check they look at different columns. assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2] # Check they use different seeds assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3 # Check they all have the same number of rows assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500] # Now try with different row factors embed = MultiHashEmbed( width=32, rows=[1000, 50, 250], attrs=["NORM", "PREFIX", "SHAPE"], include_static_vectors=False, ) hash_embeds = [node for node in embed.walk() if node.name == "hashembed"] assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250] @pytest.mark.parametrize( "seed,model_func,kwargs", [ (0, build_Tok2Vec_model, get_tok2vec_kwargs()), (0, build_bow_text_classifier, get_textcat_bow_kwargs()), (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()), ], ) def test_models_initialize_consistently(seed, model_func, kwargs): fix_random_seed(seed) model1 = model_func(**kwargs) model1.initialize() fix_random_seed(seed) model2 = model_func(**kwargs) model2.initialize() params1 = get_all_params(model1) params2 = get_all_params(model2) assert_array_equal(model1.ops.to_numpy(params1), model2.ops.to_numpy(params2)) @pytest.mark.parametrize( "seed,model_func,kwargs,get_X", [ (0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs), (0, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs), (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs), ], ) def test_models_predict_consistently(seed, model_func, kwargs, get_X): fix_random_seed(seed) model1 = model_func(**kwargs).initialize() Y1 = model1.predict(get_X()) fix_random_seed(seed) model2 = model_func(**kwargs).initialize() Y2 = model2.predict(get_X()) if model1.has_ref("tok2vec"): tok2vec1 = model1.get_ref("tok2vec").predict(get_X()) tok2vec2 = model2.get_ref("tok2vec").predict(get_X()) for i in range(len(tok2vec1)): for j in range(len(tok2vec1[i])): assert_array_equal( numpy.asarray(model1.ops.to_numpy(tok2vec1[i][j])), numpy.asarray(model2.ops.to_numpy(tok2vec2[i][j])), ) try: Y1 = model1.ops.to_numpy(Y1) Y2 = model2.ops.to_numpy(Y2) except Exception: pass if isinstance(Y1, numpy.ndarray): assert_array_equal(Y1, Y2) elif isinstance(Y1, List): assert len(Y1) == len(Y2) for y1, y2 in zip(Y1, Y2): try: y1 = model1.ops.to_numpy(y1) y2 = model2.ops.to_numpy(y2) except Exception: pass assert_array_equal(y1, y2) else: raise ValueError(f"Could not compare type {type(Y1)}") @pytest.mark.parametrize( "seed,dropout,model_func,kwargs,get_X", [ (0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs), (0, 0.2, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs), (0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs), ], ) def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X): def get_updated_model(): fix_random_seed(seed) optimizer = Adam(0.001) model = model_func(**kwargs).initialize() initial_params = get_all_params(model) set_dropout_rate(model, dropout) for _ in range(5): Y, get_dX = model.begin_update(get_X()) dY = get_gradient(model, Y) get_dX(dY) model.finish_update(optimizer) updated_params = get_all_params(model) with pytest.raises(AssertionError): assert_array_equal( model.ops.to_numpy(initial_params), model.ops.to_numpy(updated_params) ) return model model1 = get_updated_model() model2 = get_updated_model() assert_array_almost_equal( model1.ops.to_numpy(get_all_params(model1)), model2.ops.to_numpy(get_all_params(model2)), ) @pytest.mark.parametrize("model_func,kwargs", [(StaticVectors, {"nO": 128, "nM": 300})]) def test_empty_docs(model_func, kwargs): nlp = English() model = model_func(**kwargs).initialize() # Test the layer can be called successfully with 0, 1 and 2 empty docs. for n_docs in range(3): docs = [nlp("") for _ in range(n_docs)] # Test predict model.predict(docs) # Test backprop output, backprop = model.begin_update(docs) backprop(output) def test_init_extract_spans(): model = extract_spans().initialize() def test_extract_spans_span_indices(): model = extract_spans().initialize() spans = Ragged( model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"), model.ops.asarray([2, 1], dtype="i"), ) x_lengths = model.ops.asarray([5, 10], dtype="i") indices = _get_span_indices(model.ops, spans, x_lengths) assert list(indices) == [0, 1, 2, 2, 10, 11] def test_extract_spans_forward_backward(): model = extract_spans().initialize() X = Ragged(model.ops.alloc2f(15, 4), model.ops.asarray([5, 10], dtype="i")) spans = Ragged( model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"), model.ops.asarray([2, 1], dtype="i"), ) Y, backprop = model.begin_update((X, spans)) assert list(Y.lengths) == [3, 1, 2] assert Y.dataXd.shape == (6, 4) dX, spans2 = backprop(Y) assert spans2 is spans assert dX.dataXd.shape == X.dataXd.shape assert list(dX.lengths) == list(X.lengths) def test_spancat_model_init(): model = build_spancat_model( build_Tok2Vec_model(**get_tok2vec_kwargs()), reduce_mean(), Logistic() ) model.initialize() def test_spancat_model_forward_backward(nO=5): tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs()) docs = get_docs() spans_list = [] lengths = [] for doc in docs: spans_list.append(doc[:2]) spans_list.append(doc[1:4]) lengths.append(2) spans = Ragged( tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"), tok2vec.ops.asarray(lengths, dtype="i"), ) model = build_spancat_model( tok2vec, reduce_mean(), chain(Relu(nO=nO), Logistic()) ).initialize(X=(docs, spans)) Y, backprop = model((docs, spans), is_train=True) assert Y.shape == (spans.dataXd.shape[0], nO) backprop(Y)