# coding: utf8 from __future__ import unicode_literals, division, print_function import json from collections import defaultdict import cytoolz from ..scorer import Scorer from ..gold import GoldParse, merge_sents from ..gold import read_json_file as read_gold_json from ..util import prints from .. import util def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ner, parser_L1): output_path = util.ensure_path(output_dir) train_path = util.ensure_path(train_data) dev_path = util.ensure_path(dev_data) if not output_path.exists(): prints(output_path, title="Output directory not found", exits=True) if not train_path.exists(): prints(train_path, title="Training data not found", exits=True) if dev_path and not dev_path.exists(): prints(dev_path, title="Development data not found", exits=True) lang = util.get_lang_class(language) parser_cfg = { 'pseudoprojective': True, 'L1': parser_L1, 'n_iter': n_iter, 'lang': language, 'features': lang.Defaults.parser_features} entity_cfg = { 'n_iter': n_iter, 'lang': language, 'features': lang.Defaults.entity_features} tagger_cfg = { 'n_iter': n_iter, 'lang': language, 'features': lang.Defaults.tagger_features} gold_train = list(read_gold_json(train_path))[:100] gold_dev = list(read_gold_json(dev_path)) if dev_path else None gold_dev = gold_dev[:100] train_model(lang, gold_train, gold_dev, output_path, n_iter) if gold_dev: scorer = evaluate(lang, gold_dev, output_path) print_results(scorer) def train_config(config): config_path = util.ensure_path(config) if not config_path.is_file(): prints(config_path, title="Config file not found", exits=True) config = json.load(config_path) for setting in []: if setting not in config.keys(): prints("%s not found in config file." % setting, title="Missing setting") def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg): print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %") nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies', 'entities']) # TODO: Get spaCy using Thinc's trainer and optimizer with nlp.begin_training(train_data, **cfg) as (trainer, optimizer): for itn, epoch in enumerate(trainer.epochs(n_iter)): losses = defaultdict(float) for docs, golds in epoch: state = nlp.update(docs, golds, drop=0., sgd=optimizer) losses['dep_loss'] += state.get('parser_loss', 0.0) if dev_data: dev_scores = trainer.evaluate(dev_data).scores else: dev_scores = defaultdict(float) print_progress(itn, losses, dev_scores) def evaluate(Language, gold_tuples, output_path): print("Load parser", output_path) nlp = Language(path=output_path) scorer = Scorer() for raw_text, sents in gold_tuples: sents = merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.parser(tokens) nlp.entity(tokens) else: tokens = nlp(raw_text) gold = GoldParse.from_annot_tuples(tokens, annot_tuples) scorer.score(tokens, gold) return scorer def print_progress(itn, losses, dev_scores): # TODO: Fix! scores = {} for col in ['dep_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']: scores[col] = 0.0 scores.update(losses) scores.update(dev_scores) tpl = '{:d}\t{dep_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' print(tpl.format(itn, **scores)) def print_results(scorer): results = { 'TOK': '%.2f' % scorer.token_acc, 'POS': '%.2f' % scorer.tags_acc, 'UAS': '%.2f' % scorer.uas, 'LAS': '%.2f' % scorer.las, 'NER P': '%.2f' % scorer.ents_p, 'NER R': '%.2f' % scorer.ents_r, 'NER F': '%.2f' % scorer.ents_f} util.print_table(results, title="Results")