#!/usr/bin/env python # coding: utf8 """Example of a spaCy v2.0 pipeline component that requests all countries via the REST Countries API, merges country names into one token, assigns entity labels and sets attributes on country tokens, e.g. the capital and lat/lng coordinates. Can be extended with more details from the API. * REST Countries API: https://restcountries.eu (Mozilla Public License MPL 2.0) * Custom pipeline components: https://alpha.spacy.io//usage/processing-pipelines#custom-components Compatible with: spaCy v2.0.0+ """ from __future__ import unicode_literals, print_function import requests import plac from spacy.lang.en import English from spacy.matcher import PhraseMatcher from spacy.tokens import Doc, Span, Token def main(): # For simplicity, we start off with only the blank English Language class # and no model or pre-defined pipeline loaded. nlp = English() rest_countries = RESTCountriesComponent(nlp) # initialise component nlp.add_pipe(rest_countries) # add it to the pipeline doc = nlp(u"Some text about Colombia and the Czech Republic") print('Pipeline', nlp.pipe_names) # pipeline contains component name print('Doc has countries', doc._.has_country) # Doc contains countries for token in doc: if token._.is_country: print(token.text, token._.country_capital, token._.country_latlng, token._.country_flag) # country data print('Entities', [(e.text, e.label_) for e in doc.ents]) # entities class RESTCountriesComponent(object): """spaCy v2.0 pipeline component that requests all countries via the REST Countries API, merges country names into one token, assigns entity labels and sets attributes on country tokens. """ name = 'rest_countries' # component name, will show up in the pipeline def __init__(self, nlp, label='GPE'): """Initialise the pipeline component. The shared nlp instance is used to initialise the matcher with the shared vocab, get the label ID and generate Doc objects as phrase match patterns. """ # Make request once on initialisation and store the data r = requests.get('https://restcountries.eu/rest/v2/all') r.raise_for_status() # make sure requests raises an error if it fails countries = r.json() # Convert API response to dict keyed by country name for easy lookup # This could also be extended using the alternative and foreign language # names provided by the API self.countries = {c['name']: c for c in countries} self.label = nlp.vocab.strings[label] # get entity label ID # Set up the PhraseMatcher with Doc patterns for each country name patterns = [nlp(c) for c in self.countries.keys()] self.matcher = PhraseMatcher(nlp.vocab) self.matcher.add('COUNTRIES', None, *patterns) # Register attribute on the Token. We'll be overwriting this based on # the matches, so we're only setting a default value, not a getter. # If no default value is set, it defaults to None. Token.set_extension('is_country', default=False) Token.set_extension('country_capital') Token.set_extension('country_latlng') Token.set_extension('country_flag') # Register attributes on Doc and Span via a getter that checks if one of # the contained tokens is set to is_country == True. Doc.set_extension('has_country', getter=self.has_country) Span.set_extension('has_country', getter=self.has_country) def __call__(self, doc): """Apply the pipeline component on a Doc object and modify it if matches are found. Return the Doc, so it can be processed by the next component in the pipeline, if available. """ matches = self.matcher(doc) spans = [] # keep the spans for later so we can merge them afterwards for _, start, end in matches: # Generate Span representing the entity & set label entity = Span(doc, start, end, label=self.label) spans.append(entity) # Set custom attribute on each token of the entity # Can be extended with other data returned by the API, like # currencies, country code, flag, calling code etc. for token in entity: token._.set('is_country', True) token._.set('country_capital', self.countries[entity.text]['capital']) token._.set('country_latlng', self.countries[entity.text]['latlng']) token._.set('country_flag', self.countries[entity.text]['flag']) # Overwrite doc.ents and add entity – be careful not to replace! doc.ents = list(doc.ents) + [entity] for span in spans: # Iterate over all spans and merge them into one token. This is done # after setting the entities – otherwise, it would cause mismatched # indices! span.merge() return doc # don't forget to return the Doc! def has_country(self, tokens): """Getter for Doc and Span attributes. Returns True if one of the tokens is a country. Since the getter is only called when we access the attribute, we can refer to the Token's 'is_country' attribute here, which is already set in the processing step.""" return any([t._.get('is_country') for t in tokens]) if __name__ == '__main__': plac.call(main) # Expected output: # Pipeline ['rest_countries'] # Doc has countries True # Colombia Bogotá [4.0, -72.0] https://restcountries.eu/data/col.svg # Czech Republic Prague [49.75, 15.5] https://restcountries.eu/data/cze.svg # Entities [('Colombia', 'GPE'), ('Czech Republic', 'GPE')]