# cython: infer_types=True # coding: utf8 from __future__ import unicode_literals from libc.string cimport memcpy from cpython.mem cimport PyMem_Malloc, PyMem_Free # Compiler crashes on memory view coercion without this. Should report bug. from cython.view cimport array as cvarray cimport numpy as np np.import_array() import numpy from ..typedefs cimport hash_t from ..lexeme cimport Lexeme from .. import parts_of_speech from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP from ..compat import is_config from .. import util from .. import about from .underscore import Underscore cdef class Token: """An individual token – i.e. a word, punctuation symbol, whitespace, etc.""" @classmethod def set_extension(cls, name, default=None, method=None, getter=None, setter=None): Underscore.token_extensions[name] = (default, method, getter, setter) @classmethod def get_extension(cls, name): return Underscore.span_extensions.get(name) @classmethod def has_extension(cls, name): return name in Underscore.span_extensions def __cinit__(self, Vocab vocab, Doc doc, int offset): """Construct a `Token` object. vocab (Vocab): A storage container for lexical types. doc (Doc): The parent document. offset (int): The index of the token within the document. """ self.vocab = vocab self.doc = doc self.c = &self.doc.c[offset] self.i = offset def __hash__(self): return hash((self.doc, self.i)) def __len__(self): """The number of unicode characters in the token, i.e. `token.text`. RETURNS (int): The number of unicode characters in the token. """ return self.c.lex.length def __unicode__(self): return self.text def __bytes__(self): return self.text.encode('utf8') def __str__(self): if is_config(python3=True): return self.__unicode__() return self.__bytes__() def __repr__(self): return self.__str__() def __richcmp__(self, Token other, int op): # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html cdef Doc my_doc = self.doc cdef Doc other_doc = other.doc my = self.idx their = other.idx if other is not None else None if op == 0: return my < their elif op == 2: if my_doc is other_doc: return my == their else: return False elif op == 4: return my > their elif op == 1: return my <= their elif op == 3: if my_doc is other_doc: return my != their else: return True elif op == 5: return my >= their else: raise ValueError(op) @property def _(self): return Underscore(Underscore.token_extensions, self, start=self.idx, end=None) cpdef bint check_flag(self, attr_id_t flag_id) except -1: """Check the value of a boolean flag. flag_id (int): The ID of the flag attribute. RETURNS (bool): Whether the flag is set. EXAMPLE: >>> from spacy.attrs import IS_TITLE >>> doc = nlp(u'Give it back! He pleaded.') >>> token = doc[0] >>> token.check_flag(IS_TITLE) True """ return Lexeme.c_check_flag(self.c.lex, flag_id) def nbor(self, int i=1): """Get a neighboring token. i (int): The relative position of the token to get. Defaults to 1. RETURNS (Token): The token at position `self.doc[self.i+i]`. """ if self.i+i < 0 or (self.i+i >= len(self.doc)): msg = "Error accessing doc[%d].nbor(%d), for doc of length %d" raise IndexError(msg % (self.i, i, len(self.doc))) return self.doc[self.i+i] def similarity(self, other): """Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. other (object): The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. RETURNS (float): A scalar similarity score. Higher is more similar. """ if 'similarity' in self.doc.user_token_hooks: return self.doc.user_token_hooks['similarity'](self) if self.vector_norm == 0 or other.vector_norm == 0: return 0.0 return (numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)) property lex_id: """RETURNS (int): Sequential ID of the token's lexical type.""" def __get__(self): return self.c.lex.id property rank: """RETURNS (int): Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors.""" def __get__(self): return self.c.lex.id property string: """Deprecated: Use Token.text_with_ws instead.""" def __get__(self): return self.text_with_ws property text: """RETURNS (unicode): The original verbatim text of the token.""" def __get__(self): return self.orth_ property text_with_ws: """RETURNS (unicode): The text content of the span (with trailing whitespace). """ def __get__(self): cdef unicode orth = self.vocab.strings[self.c.lex.orth] if self.c.spacy: return orth + u' ' else: return orth property prob: """RETURNS (float): Smoothed log probability estimate of token type.""" def __get__(self): return self.c.lex.prob property sentiment: """RETURNS (float): A scalar value indicating the positivity or negativity of the token.""" def __get__(self): if 'sentiment' in self.doc.user_token_hooks: return self.doc.user_token_hooks['sentiment'](self) return self.c.lex.sentiment property lang: """RETURNS (uint64): ID of the language of the parent document's vocabulary. """ def __get__(self): return self.c.lex.lang property idx: """RETURNS (int): The character offset of the token within the parent document. """ def __get__(self): return self.c.idx property cluster: """RETURNS (int): Brown cluster ID.""" def __get__(self): return self.c.lex.cluster property orth: """RETURNS (uint64): ID of the verbatim text content.""" def __get__(self): return self.c.lex.orth property lower: """RETURNS (uint64): ID of the lowercase token text.""" def __get__(self): return self.c.lex.lower property norm: """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of the token text. Usually set in the language's tokenizer exceptions or norm exceptions. """ def __get__(self): return self.c.lex.norm property shape: """RETURNS (uint64): ID of the token's shape, a transform of the tokens's string, to show orthographic features (e.g. "Xxxx", "dd"). """ def __get__(self): return self.c.lex.shape property prefix: """RETURNS (uint64): ID of a length-N substring from the start of the token. Defaults to `N=1`. """ def __get__(self): return self.c.lex.prefix property suffix: """RETURNS (uint64): ID of a length-N substring from the end of the token. Defaults to `N=3`. """ def __get__(self): return self.c.lex.suffix property lemma: """RETURNS (uint64): ID of the base form of the word, with no inflectional suffixes. """ def __get__(self): if self.c.lemma == 0: lemma = self.vocab.morphology.lemmatizer.lookup(self.orth_) return lemma else: return self.c.lemma def __set__(self, attr_t lemma): self.c.lemma = lemma property pos: """RETURNS (uint64): ID of coarse-grained part-of-speech tag.""" def __get__(self): return self.c.pos property tag: """RETURNS (uint64): ID of fine-grained part-of-speech tag.""" def __get__(self): return self.c.tag def __set__(self, attr_t tag): self.vocab.morphology.assign_tag(self.c, tag) property dep: """RETURNS (uint64): ID of syntactic dependency label.""" def __get__(self): return self.c.dep def __set__(self, attr_t label): self.c.dep = label property has_vector: """A boolean value indicating whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object. """ def __get__(self): if 'has_vector' in self.doc.user_token_hooks: return self.doc.user_token_hooks['has_vector'](self) if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: return True return self.vocab.has_vector(self.c.lex.orth) property vector: """A real-valued meaning representation. RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array representing the token's semantics. """ def __get__(self): if 'vector' in self.doc.user_token_hooks: return self.doc.user_token_hooks['vector'](self) if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: return self.doc.tensor[self.i] else: return self.vocab.get_vector(self.c.lex.orth) property vector_norm: """The L2 norm of the token's vector representation. RETURNS (float): The L2 norm of the vector representation. """ def __get__(self): if 'vector_norm' in self.doc.user_token_hooks: return self.doc.user_token_hooks['vector_norm'](self) vector = self.vector return numpy.sqrt((vector ** 2).sum()) property n_lefts: """RETURNS (int): The number of leftward immediate children of the word, in the syntactic dependency parse. """ def __get__(self): return self.c.l_kids property n_rights: """RETURNS (int): The number of rightward immediate children of the word, in the syntactic dependency parse. """ def __get__(self): return self.c.r_kids property sent_start: def __get__(self): util.deprecated( "Token.sent_start is now deprecated. Use Token.is_sent_start " "instead, which returns a boolean value or None if the answer " "is unknown – instead of a misleading 0 for False and 1 for " "True. It also fixes a quirk in the old logic that would " "always set the property to 0 for the first word of the " "document.") # Handle broken backwards compatibility case: doc[0].sent_start # was False. if self.i == 0: return False else: return self.sent_start def __set__(self, value): self.is_sent_start = value property is_sent_start: """RETURNS (bool / None): Whether the token starts a sentence. None if unknown. """ def __get__(self): if self.c.sent_start == 0: return None elif self.c.sent_start < 0: return False else: return True def __set__(self, value): if self.doc.is_parsed: raise ValueError( "Refusing to write to token.sent_start if its document " "is parsed, because this may cause inconsistent state.") if value is None: self.c.sent_start = 0 elif value is True: self.c.sent_start = 1 elif value is False: self.c.sent_start = -1 else: raise ValueError("Invalid value for token.sent_start. Must be " "one of: None, True, False") property lefts: """The leftward immediate children of the word, in the syntactic dependency parse. YIELDS (Token): A left-child of the token. """ def __get__(self): cdef int nr_iter = 0 cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge) while ptr < self.c: if ptr + ptr.head == self.c: yield self.doc[ptr - (self.c - self.i)] ptr += 1 nr_iter += 1 # This is ugly, but it's a way to guard out infinite loops if nr_iter >= 10000000: raise RuntimeError("Possibly infinite loop encountered " "while looking for token.lefts") property rights: """The rightward immediate children of the word, in the syntactic dependency parse. YIELDS (Token): A right-child of the token. """ def __get__(self): cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i) tokens = [] cdef int nr_iter = 0 while ptr > self.c: if ptr + ptr.head == self.c: tokens.append(self.doc[ptr - (self.c - self.i)]) ptr -= 1 nr_iter += 1 if nr_iter >= 10000000: raise RuntimeError("Possibly infinite loop encountered " "while looking for token.rights") tokens.reverse() for t in tokens: yield t property children: """A sequence of the token's immediate syntactic children. YIELDS (Token): A child token such that child.head==self """ def __get__(self): yield from self.lefts yield from self.rights property subtree: """A sequence of all the token's syntactic descendents. YIELDS (Token): A descendent token such that `self.is_ancestor(descendent)`. """ def __get__(self): for word in self.lefts: yield from word.subtree yield self for word in self.rights: yield from word.subtree property left_edge: """The leftmost token of this token's syntactic descendents. RETURNS (Token): The first token such that `self.is_ancestor(token)`. """ def __get__(self): return self.doc[self.c.l_edge] property right_edge: """The rightmost token of this token's syntactic descendents. RETURNS (Token): The last token such that `self.is_ancestor(token)`. """ def __get__(self): return self.doc[self.c.r_edge] property ancestors: """A sequence of this token's syntactic ancestors. YIELDS (Token): A sequence of ancestor tokens such that `ancestor.is_ancestor(self)`. """ def __get__(self): cdef const TokenC* head_ptr = self.c # guard against infinite loop, no token can have # more ancestors than tokens in the tree cdef int i = 0 while head_ptr.head != 0 and i < self.doc.length: head_ptr += head_ptr.head yield self.doc[head_ptr - (self.c - self.i)] i += 1 def is_ancestor(self, descendant): """Check whether this token is a parent, grandparent, etc. of another in the dependency tree. descendant (Token): Another token. RETURNS (bool): Whether this token is the ancestor of the descendant. """ if self.doc is not descendant.doc: return False return any(ancestor.i == self.i for ancestor in descendant.ancestors) property head: """The syntactic parent, or "governor", of this token. RETURNS (Token): The token predicted by the parser to be the head of the current token. """ def __get__(self): return self.doc[self.i + self.c.head] def __set__(self, Token new_head): # this function sets the head of self to new_head # and updates the counters for left/right dependents # and left/right corner for the new and the old head # do nothing if old head is new head if self.i + self.c.head == new_head.i: return cdef Token old_head = self.head cdef int rel_newhead_i = new_head.i - self.i # is the new head a descendant of the old head cdef bint is_desc = old_head.is_ancestor(new_head) cdef int new_edge cdef Token anc, child # update number of deps of old head if self.c.head > 0: # left dependent old_head.c.l_kids -= 1 if self.c.l_edge == old_head.c.l_edge: # the token dominates the left edge so the left edge of # the head may change when the token is reattached, it may # not change if the new head is a descendant of the current # head new_edge = self.c.l_edge # the new l_edge is the left-most l_edge on any of the # other dependents where the l_edge is left of the head, # otherwise it is the head if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.l_edge < new_edge: new_edge = child.c.l_edge old_head.c.l_edge = new_edge # walk up the tree from old_head and assign new l_edge to # ancestors until an ancestor already has an l_edge that's # further left for anc in old_head.ancestors: if anc.c.l_edge <= new_edge: break anc.c.l_edge = new_edge elif self.c.head < 0: # right dependent old_head.c.r_kids -= 1 # do the same thing as for l_edge if self.c.r_edge == old_head.c.r_edge: new_edge = self.c.r_edge if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.r_edge > new_edge: new_edge = child.c.r_edge old_head.c.r_edge = new_edge for anc in old_head.ancestors: if anc.c.r_edge >= new_edge: break anc.c.r_edge = new_edge # update number of deps of new head if rel_newhead_i > 0: # left dependent new_head.c.l_kids += 1 # walk up the tree from new head and set l_edge to self.l_edge # until you hit a token with an l_edge further to the left if self.c.l_edge < new_head.c.l_edge: new_head.c.l_edge = self.c.l_edge for anc in new_head.ancestors: if anc.c.l_edge <= self.c.l_edge: break anc.c.l_edge = self.c.l_edge elif rel_newhead_i < 0: # right dependent new_head.c.r_kids += 1 # do the same as for l_edge if self.c.r_edge > new_head.c.r_edge: new_head.c.r_edge = self.c.r_edge for anc in new_head.ancestors: if anc.c.r_edge >= self.c.r_edge: break anc.c.r_edge = self.c.r_edge # set new head self.c.head = rel_newhead_i property conjuncts: """A sequence of coordinated tokens, including the token itself. YIELDS (Token): A coordinated token. """ def __get__(self): """Get a list of conjoined words.""" cdef Token word if 'conjuncts' in self.doc.user_token_hooks: yield from self.doc.user_token_hooks['conjuncts'](self) else: if self.dep_ != 'conj': for word in self.rights: if word.dep_ == 'conj': yield word yield from word.conjuncts property ent_type: """RETURNS (uint64): Named entity type.""" def __get__(self): return self.c.ent_type def __set__(self, ent_type): self.c.ent_type = ent_type property ent_iob: """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag is assigned. RETURNS (uint64): IOB code of named entity tag. """ def __get__(self): return self.c.ent_iob property ent_type_: """RETURNS (unicode): Named entity type.""" def __get__(self): return self.vocab.strings[self.c.ent_type] def __set__(self, ent_type): self.c.ent_type = self.vocab.strings.add(ent_type) property ent_iob_: """IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. RETURNS (unicode): IOB code of named entity tag. """ def __get__(self): iob_strings = ('', 'I', 'O', 'B') return iob_strings[self.c.ent_iob] property ent_id: """RETURNS (uint64): ID of the entity the token is an instance of, if any. """ def __get__(self): return self.c.ent_id def __set__(self, hash_t key): self.c.ent_id = key property ent_id_: """RETURNS (unicode): ID of the entity the token is an instance of, if any. """ def __get__(self): return self.vocab.strings[self.c.ent_id] def __set__(self, name): self.c.ent_id = self.vocab.strings.add(name) property whitespace_: """RETURNS (unicode): The trailing whitespace character, if present. """ def __get__(self): return ' ' if self.c.spacy else '' property orth_: """RETURNS (unicode): Verbatim text content (identical to `Token.text`). Existst mostly for consistency with the other attributes. """ def __get__(self): return self.vocab.strings[self.c.lex.orth] property lower_: """RETURNS (unicode): The lowercase token text. Equivalent to `Token.text.lower()`. """ def __get__(self): return self.vocab.strings[self.c.lex.lower] property norm_: """RETURNS (unicode): The token's norm, i.e. a normalised form of the token text. Usually set in the language's tokenizer exceptions or norm exceptions. """ def __get__(self): return self.vocab.strings[self.c.lex.norm] property shape_: """RETURNS (unicode): Transform of the tokens's string, to show orthographic features. For example, "Xxxx" or "dd". """ def __get__(self): return self.vocab.strings[self.c.lex.shape] property prefix_: """RETURNS (unicode): A length-N substring from the start of the token. Defaults to `N=1`. """ def __get__(self): return self.vocab.strings[self.c.lex.prefix] property suffix_: """RETURNS (unicode): A length-N substring from the end of the token. Defaults to `N=3`. """ def __get__(self): return self.vocab.strings[self.c.lex.suffix] property lang_: """RETURNS (unicode): Language of the parent document's vocabulary, e.g. 'en'. """ def __get__(self): return self.vocab.strings[self.c.lex.lang] property lemma_: """RETURNS (unicode): The token lemma, i.e. the base form of the word, with no inflectional suffixes. """ def __get__(self): if self.c.lemma == 0: return self.vocab.morphology.lemmatizer.lookup(self.orth_) else: return self.vocab.strings[self.c.lemma] def __set__(self, unicode lemma_): self.c.lemma = self.vocab.strings.add(lemma_) property pos_: """RETURNS (unicode): Coarse-grained part-of-speech tag.""" def __get__(self): return parts_of_speech.NAMES[self.c.pos] property tag_: """RETURNS (unicode): Fine-grained part-of-speech tag.""" def __get__(self): return self.vocab.strings[self.c.tag] def __set__(self, tag): self.tag = self.vocab.strings.add(tag) property dep_: """RETURNS (unicode): The syntactic dependency label.""" def __get__(self): return self.vocab.strings[self.c.dep] def __set__(self, unicode label): self.c.dep = self.vocab.strings.add(label) property is_oov: """RETURNS (bool): Whether the token is out-of-vocabulary.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_OOV) property is_stop: """RETURNS (bool): Whether the token is a stop word, i.e. part of a "stop list" defined by the language data. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_STOP) property is_alpha: """RETURNS (bool): Whether the token consists of alpha characters. Equivalent to `token.text.isalpha()`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_ALPHA) property is_ascii: """RETURNS (bool): Whether the token consists of ASCII characters. Equivalent to `[any(ord(c) >= 128 for c in token.text)]`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_ASCII) property is_digit: """RETURNS (bool): Whether the token consists of digits. Equivalent to `token.text.isdigit()`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_DIGIT) property is_lower: """RETURNS (bool): Whether the token is in lowercase. Equivalent to `token.text.islower()`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_LOWER) property is_upper: """RETURNS (bool): Whether the token is in uppercase. Equivalent to `token.text.isupper()` """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_UPPER) property is_title: """RETURNS (bool): Whether the token is in titlecase. Equivalent to `token.text.istitle()`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_TITLE) property is_punct: """RETURNS (bool): Whether the token is punctuation.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_PUNCT) property is_space: """RETURNS (bool): Whether the token consists of whitespace characters. Equivalent to `token.text.isspace()`. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_SPACE) property is_bracket: """RETURNS (bool): Whether the token is a bracket.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_BRACKET) property is_quote: """RETURNS (bool): Whether the token is a quotation mark.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_QUOTE) property is_left_punct: """RETURNS (bool): Whether the token is a left punctuation mark.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT) property is_right_punct: """RETURNS (bool): Whether the token is a left punctuation mark.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT) property like_url: """RETURNS (bool): Whether the token resembles a URL.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_URL) property like_num: """RETURNS (bool): Whether the token resembles a number, e.g. "10.9", "10", "ten", etc. """ def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_NUM) property like_email: """RETURNS (bool): Whether the token resembles an email address.""" def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)