//- 💫 DOCS > API > ANNOTATION > TRAINING p | spaCy takes training data in JSON format. The built-in | #[+api("cli#convert") #[code convert]] command helps you convert the | #[code .conllu] format used by the | #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora] | to spaCy's training format. +aside("Annotating entities") | Named entities are provided in the #[+a("/api/annotation#biluo") BILUO] | notation. Tokens outside an entity are set to #[code "O"] and tokens | that are part of an entity are set to the entity label, prefixed by the | BILUO marker. For example #[code "B-ORG"] describes the first token of | a multi-token #[code ORG] entity and #[code "U-PERSON"] a single | token representing a #[code PERSON] entity +code("Example structure"). [{ "id": int, # ID of the document within the corpus "paragraphs": [{ # list of paragraphs in the corpus "raw": string, # raw text of the paragraph "sentences": [{ # list of sentences in the paragraph "tokens": [{ # list of tokens in the sentence "id": int, # index of the token in the document "dep": string, # dependency label "head": int, # offset of token head relative to token index "tag": string, # part-of-speech tag "orth": string, # verbatim text of the token "ner": string # BILUO label, e.g. "O" or "B-ORG" }], "brackets": [{ # phrase structure (NOT USED by current models) "first": int, # index of first token "last": int, # index of last token "label": string # phrase label }] }] }] }] p | Here's an example of dependencies, part-of-speech tags and names | entities, taken from the English Wall Street Journal portion of the Penn | Treebank: +github("spacy", "examples/training/training-data.json", false, false, "json")