--- title: Token teaser: An individual token — i.e. a word, punctuation symbol, whitespace, etc. tag: class source: spacy/tokens/token.pyx --- ## Token.\_\_init\_\_ {#init tag="method"} Construct a `Token` object. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > token = doc[0] > assert token.text == u"Give" > ``` | Name | Type | Description | | ----------- | ------- | ------------------------------------------- | | `vocab` | `Vocab` | A storage container for lexical types. | | `doc` | `Doc` | The parent document. | | `offset` | int | The index of the token within the document. | | **RETURNS** | `Token` | The newly constructed object. | ## Token.\_\_len\_\_ {#len tag="method"} The number of unicode characters in the token, i.e. `token.text`. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > token = doc[0] > assert len(token) == 4 > ``` | Name | Type | Description | | ----------- | ---- | ---------------------------------------------- | | **RETURNS** | int | The number of unicode characters in the token. | ## Token.set_extension {#set_extension tag="classmethod" new="2"} Define a custom attribute on the `Token` which becomes available via `Token._`. For details, see the documentation on [custom attributes](/usage/processing-pipelines#custom-components-attributes). > #### Example > > ```python > from spacy.tokens import Token > fruit_getter = lambda token: token.text in (u"apple", u"pear", u"banana") > Token.set_extension("is_fruit", getter=fruit_getter) > doc = nlp(u"I have an apple") > assert doc[3]._.is_fruit > ``` | Name | Type | Description | | --------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------- | | `name` | unicode | Name of the attribute to set by the extension. For example, `'my_attr'` will be available as `token._.my_attr`. | | `default` | - | Optional default value of the attribute if no getter or method is defined. | | `method` | callable | Set a custom method on the object, for example `token._.compare(other_token)`. | | `getter` | callable | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. | | `setter` | callable | Setter function that takes the `Token` and a value, and modifies the object. Is called when the user writes to the `Token._` attribute. | ## Token.get_extension {#get_extension tag="classmethod" new="2"} Look up a previously registered extension by name. Returns a 4-tuple `(default, method, getter, setter)` if the extension is registered. Raises a `KeyError` otherwise. > #### Example > > ```python > from spacy.tokens import Token > Token.set_extension("is_fruit", default=False) > extension = Token.get_extension("is_fruit") > assert extension == (False, None, None, None) > ``` | Name | Type | Description | | ----------- | ------- | ------------------------------------------------------------- | | `name` | unicode | Name of the extension. | | **RETURNS** | tuple | A `(default, method, getter, setter)` tuple of the extension. | ## Token.has_extension {#has_extension tag="classmethod" new="2"} Check whether an extension has been registered on the `Token` class. > #### Example > > ```python > from spacy.tokens import Token > Token.set_extension("is_fruit", default=False) > assert Token.has_extension("is_fruit") > ``` | Name | Type | Description | | ----------- | ------- | ------------------------------------------ | | `name` | unicode | Name of the extension to check. | | **RETURNS** | bool | Whether the extension has been registered. | ## Token.remove_extension {#remove_extension tag="classmethod" new=""2.0.11""} Remove a previously registered extension. > #### Example > > ```python > from spacy.tokens import Token > Token.set_extension("is_fruit", default=False) > removed = Token.remove_extension("is_fruit") > assert not Token.has_extension("is_fruit") > ``` | Name | Type | Description | | ----------- | ------- | --------------------------------------------------------------------- | | `name` | unicode | Name of the extension. | | **RETURNS** | tuple | A `(default, method, getter, setter)` tuple of the removed extension. | ## Token.check_flag {#check_flag tag="method"} Check the value of a boolean flag. > #### Example > > ```python > from spacy.attrs import IS_TITLE > doc = nlp(u"Give it back! He pleaded.") > token = doc[0] > assert token.check_flag(IS_TITLE) == True > ``` | Name | Type | Description | | ----------- | ---- | -------------------------------------- | | `flag_id` | int | The attribute ID of the flag to check. | | **RETURNS** | bool | Whether the flag is set. | ## Token.similarity {#similarity tag="method" model="vectors"} Compute a semantic similarity estimate. Defaults to cosine over vectors. > #### Example > > ```python > apples, _, oranges = nlp(u"apples and oranges") > apples_oranges = apples.similarity(oranges) > oranges_apples = oranges.similarity(apples) > assert apples_oranges == oranges_apples > ``` | Name | Type | Description | | ----------- | ----- | -------------------------------------------------------------------------------------------- | | other | - | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. | | **RETURNS** | float | A scalar similarity score. Higher is more similar. | ## Token.nbor {#nbor tag="method"} Get a neighboring token. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > give_nbor = doc[0].nbor() > assert give_nbor.text == u"it" > ``` | Name | Type | Description | | ----------- | ------- | ----------------------------------------------------------- | | `i` | int | The relative position of the token to get. Defaults to `1`. | | **RETURNS** | `Token` | The token at position `self.doc[self.i+i]`. | ## Token.is_ancestor {#is_ancestor tag="method" model="parser"} Check whether this token is a parent, grandparent, etc. of another in the dependency tree. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > give = doc[0] > it = doc[1] > assert give.is_ancestor(it) > ``` | Name | Type | Description | | ----------- | ------- | ----------------------------------------------------- | | descendant | `Token` | Another token. | | **RETURNS** | bool | Whether this token is the ancestor of the descendant. | ## Token.ancestors {#ancestors tag="property" model="parser"} The rightmost token of this token's syntactic descendants. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > it_ancestors = doc[1].ancestors > assert [t.text for t in it_ancestors] == [u"Give"] > he_ancestors = doc[4].ancestors > assert [t.text for t in he_ancestors] == [u"pleaded"] > ``` | Name | Type | Description | | ---------- | ------- | --------------------------------------------------------------------- | | **YIELDS** | `Token` | A sequence of ancestor tokens such that `ancestor.is_ancestor(self)`. | ## Token.conjuncts {#conjuncts tag="property" model="parser"} A tuple of coordinated tokens, not including the token itself. > #### Example > > ```python > doc = nlp(u"I like apples and oranges") > apples_conjuncts = doc[2].conjuncts > assert [t.text for t in apples_conjuncts] == [u"oranges"] > ``` | Name | Type | Description | | ----------- | ------- | ----------------------- | | **RETURNS** | `tuple` | The coordinated tokens. | ## Token.children {#children tag="property" model="parser"} A sequence of the token's immediate syntactic children. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > give_children = doc[0].children > assert [t.text for t in give_children] == [u"it", u"back", u"!"] > ``` | Name | Type | Description | | ---------- | ------- | ------------------------------------------- | | **YIELDS** | `Token` | A child token such that `child.head==self`. | ## Token.lefts {#lefts tag="property" model="parser"} The leftward immediate children of the word, in the syntactic dependency parse. > #### Example > > ```python > doc = nlp(u"I like New York in Autumn.") > lefts = [t.text for t in doc[3].lefts] > assert lefts == [u'New'] > ``` | Name | Type | Description | | ---------- | ------- | -------------------------- | | **YIELDS** | `Token` | A left-child of the token. | ## Token.rights {#rights tag="property" model="parser"} The rightward immediate children of the word, in the syntactic dependency parse. > #### Example > > ```python > doc = nlp(u"I like New York in Autumn.") > rights = [t.text for t in doc[3].rights] > assert rights == [u"in"] > ``` | Name | Type | Description | | ---------- | ------- | --------------------------- | | **YIELDS** | `Token` | A right-child of the token. | ## Token.n_lefts {#n_lefts tag="property" model="parser"} The number of leftward immediate children of the word, in the syntactic dependency parse. > #### Example > > ```python > doc = nlp(u"I like New York in Autumn.") > assert doc[3].n_lefts == 1 > ``` | Name | Type | Description | | ----------- | ---- | -------------------------------- | | **RETURNS** | int | The number of left-child tokens. | ## Token.n_rights {#n_rights tag="property" model="parser"} The number of rightward immediate children of the word, in the syntactic dependency parse. > #### Example > > ```python > doc = nlp(u"I like New York in Autumn.") > assert doc[3].n_rights == 1 > ``` | Name | Type | Description | | ----------- | ---- | --------------------------------- | | **RETURNS** | int | The number of right-child tokens. | ## Token.subtree {#subtree tag="property" model="parser"} A sequence containing the token and all the token's syntactic descendants. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > give_subtree = doc[0].subtree > assert [t.text for t in give_subtree] == [u"Give", u"it", u"back", u"!"] > ``` | Name | Type | Description | | ---------- | ------- | -------------------------------------------------------------------------- | | **YIELDS** | `Token` | A descendant token such that `self.is_ancestor(token)` or `token == self`. | ## Token.is_sent_start {#is_sent_start tag="property" new="2"} A boolean value indicating whether the token starts a sentence. `None` if unknown. Defaults to `True` for the first token in the `Doc`. > #### Example > > ```python > doc = nlp(u"Give it back! He pleaded.") > assert doc[4].is_sent_start > assert not doc[5].is_sent_start > ``` | Name | Type | Description | | ----------- | ---- | ------------------------------------ | | **RETURNS** | bool | Whether the token starts a sentence. | As of spaCy v2.0, the `Token.sent_start` property is deprecated and has been replaced with `Token.is_sent_start`, which returns a boolean value instead of a misleading `0` for `False` and `1` for `True`. It also now returns `None` if the answer is unknown, and fixes a quirk in the old logic that would always set the property to `0` for the first word of the document. ```diff - assert doc[4].sent_start == 1 + assert doc[4].is_sent_start == True ``` ## Token.has_vector {#has_vector tag="property" model="vectors"} A boolean value indicating whether a word vector is associated with the token. > #### Example > > ```python > doc = nlp(u"I like apples") > apples = doc[2] > assert apples.has_vector > ``` | Name | Type | Description | | ----------- | ---- | --------------------------------------------- | | **RETURNS** | bool | Whether the token has a vector data attached. | ## Token.vector {#vector tag="property" model="vectors"} A real-valued meaning representation. > #### Example > > ```python > doc = nlp(u"I like apples") > apples = doc[2] > assert apples.vector.dtype == "float32" > assert apples.vector.shape == (300,) > ``` | Name | Type | Description | | ----------- | ---------------------------------------- | ---------------------------------------------------- | | **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the token's semantics. | ## Token.vector_norm {#vector_norm tag="property" model="vectors"} The L2 norm of the token's vector representation. > #### Example > > ```python > doc = nlp(u"I like apples and pasta") > apples = doc[2] > pasta = doc[4] > apples.vector_norm # 6.89589786529541 > pasta.vector_norm # 7.759851932525635 > assert apples.vector_norm != pasta.vector_norm > ``` | Name | Type | Description | | ----------- | ----- | ----------------------------------------- | | **RETURNS** | float | The L2 norm of the vector representation. | ## Attributes {#attributes} | Name | Type | Description | | -------------------------------------------- | ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The parent document. | | `sent` 2.0.12 | `Span` | The sentence span that this token is a part of. | | `text` | unicode | Verbatim text content. | | `text_with_ws` | unicode | Text content, with trailing space character if present. | | `whitespace_` | unicode | Trailing space character if present. | | `orth` | int | ID of the verbatim text content. | | `orth_` | unicode | Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. | | `vocab` | `Vocab` | The vocab object of the parent `Doc`. | | `doc` | `Doc` | The parent document. | | `head` | `Token` | The syntactic parent, or "governor", of this token. | | `left_edge` | `Token` | The leftmost token of this token's syntactic descendants. | | `right_edge` | `Token` | The rightmost token of this token's syntactic descendants. | | `i` | int | The index of the token within the parent document. | | `ent_type` | int | Named entity type. | | `ent_type_` | unicode | Named entity type. | | `ent_iob` | int | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. | | | `ent_iob_` | unicode | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. | | `ent_id` | int | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. | | `ent_id_` | unicode | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. | | `lemma` | int | Base form of the token, with no inflectional suffixes. | | `lemma_` | unicode | Base form of the token, with no inflectional suffixes. | | `norm` | int | The token's norm, i.e. a normalized form of the token text. Usually set in the language's [tokenizer exceptions](/usage/adding-languages#tokenizer-exceptions) or [norm exceptions](/usage/adding-languages#norm-exceptions). | | `norm_` | unicode | The token's norm, i.e. a normalized form of the token text. Usually set in the language's [tokenizer exceptions](/usage/adding-languages#tokenizer-exceptions) or [norm exceptions](/usage/adding-languages#norm-exceptions). | | `lower` | int | Lowercase form of the token. | | `lower_` | unicode | Lowercase form of the token text. Equivalent to `Token.text.lower()`. | | `shape` | int | Transform of the tokens's string, to show orthographic features. For example, "Xxxx" or "dd". | | `shape_` | unicode | Transform of the tokens's string, to show orthographic features. For example, "Xxxx" or "dd". | | `prefix` | int | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. | | `prefix_` | unicode | A length-N substring from the start of the token. Defaults to `N=1`. | | `suffix` | int | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. | | `suffix_` | unicode | Length-N substring from the end of the token. Defaults to `N=3`. | | `is_alpha` | bool | Does the token consist of alphabetic characters? Equivalent to `token.text.isalpha()`. | | `is_ascii` | bool | Does the token consist of ASCII characters? Equivalent to `all(ord(c) < 128 for c in token.text)`. | | `is_digit` | bool | Does the token consist of digits? Equivalent to `token.text.isdigit()`. | | `is_lower` | bool | Is the token in lowercase? Equivalent to `token.text.islower()`. | | `is_upper` | bool | Is the token in uppercase? Equivalent to `token.text.isupper()`. | | `is_title` | bool | Is the token in titlecase? Equivalent to `token.text.istitle()`. | | `is_punct` | bool | Is the token punctuation? | | `is_left_punct` | bool | Is the token a left punctuation mark, e.g. `(`? | | `is_right_punct` | bool | Is the token a right punctuation mark, e.g. `)`? | | `is_space` | bool | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. | | `is_bracket` | bool | Is the token a bracket? | | `is_quote` | bool | Is the token a quotation mark? | | `is_currency` 2.0.8 | bool | Is the token a currency symbol? | | `like_url` | bool | Does the token resemble a URL? | | `like_num` | bool | Does the token represent a number? e.g. "10.9", "10", "ten", etc. | | `like_email` | bool | Does the token resemble an email address? | | `is_oov` | bool | Is the token out-of-vocabulary? | | `is_stop` | bool | Is the token part of a "stop list"? | | `pos` | int | Coarse-grained part-of-speech. | | `pos_` | unicode | Coarse-grained part-of-speech. | | `tag` | int | Fine-grained part-of-speech. | | `tag_` | unicode | Fine-grained part-of-speech. | | `dep` | int | Syntactic dependency relation. | | `dep_` | unicode | Syntactic dependency relation. | | `lang` | int | Language of the parent document's vocabulary. | | `lang_` | unicode | Language of the parent document's vocabulary. | | `prob` | float | Smoothed log probability estimate of token's type. | | `idx` | int | The character offset of the token within the parent document. | | `sentiment` | float | A scalar value indicating the positivity or negativity of the token. | | `lex_id` | int | Sequential ID of the token's lexical type. | | `rank` | int | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. | | `cluster` | int | Brown cluster ID. | | `_` | `Underscore` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). |