# coding: utf8 from __future__ import unicode_literals, print_function import os import ujson import pip import importlib import regex as re from pathlib import Path import sys import textwrap import random import numpy import msgpack import msgpack_numpy msgpack_numpy.patch() import ujson from .symbols import ORTH from .compat import cupy, CudaStream, path2str, basestring_, input_, unicode_ LANGUAGES = {} _data_path = Path(__file__).parent / 'data' def get_lang_class(lang): """Import and load a Language class. lang (unicode): Two-letter language code, e.g. 'en'. RETURNS (Language): Language class. """ global LANGUAGES if not lang in LANGUAGES: try: module = importlib.import_module('.lang.%s' % lang, 'spacy') except ImportError: raise ImportError("Can't import language %s from spacy.lang." %lang) LANGUAGES[lang] = getattr(module, module.__all__[0]) return LANGUAGES[lang] def set_lang_class(name, cls): """Set a custom Language class name that can be loaded via get_lang_class. name (unicode): Name of Language class. cls (Language): Language class. """ global LANGUAGES LANGUAGES[name] = cls def get_data_path(require_exists=True): """Get path to spaCy data directory. require_exists (bool): Only return path if it exists, otherwise None. RETURNS (Path or None): Data path or None. """ if not require_exists: return _data_path else: return _data_path if _data_path.exists() else None def set_data_path(path): """Set path to spaCy data directory. path (unicode or Path): Path to new data directory. """ global _data_path _data_path = ensure_path(path) def ensure_path(path): """Ensure string is converted to a Path. path: Anything. If string, it's converted to Path. RETURNS: Path or original argument. """ if isinstance(path, basestring_): return Path(path) else: return path def load_model(name, **overrides): """Load a model from a shortcut link, package or data path. name (unicode): Package name, shortcut link or model path. **overrides: Specific overrides, like pipeline components to disable. RETURNS (Language): `Language` class with the loaded model. """ data_path = get_data_path() if not data_path or not data_path.exists(): raise IOError("Can't find spaCy data path: %s" % path2str(data_path)) if isinstance(name, basestring_): if (data_path / name).exists(): # in data dir or shortcut spec = importlib.util.spec_from_file_location('model', data_path / name) cls = importlib.util.module_from_spec(spec) spec.loader.exec_module(cls) return cls.load(**overrides) if is_package(name): # installed as package cls = importlib.import_module(name) return cls.load(**overrides) if Path(name).exists(): # path to model data directory model_path = Path(name) meta = get_package_meta(model_path) cls = get_lang_class(meta['lang']) nlp = cls(pipeline=meta.get('pipeline', True)) return nlp.from_disk(model_path, **overrides) elif hasattr(name, 'exists'): # Path or Path-like to model data meta = get_package_meta(name) cls = get_lang_class(meta['lang']) nlp = cls(pipeline=meta.get('pipeline', True)) return nlp.from_disk(name, **overrides) raise IOError("Can't find model '%s'" % name) def load_model_from_init_py(init_file, **overrides): """Helper function to use in the `load()` method of a model package's __init__.py. init_file (unicode): Path to model's __init__.py, i.e. `__file__`. **overrides: Specific overrides, like pipeline components to disable. RETURNS (Language): `Language` class with loaded model. """ model_path = Path(init_file).parent meta = get_model_meta(model_path) data_dir = '%s_%s-%s' % (meta['lang'], meta['name'], meta['version']) data_path = model_path / data_dir if not model_path.exists(): raise ValueError("Can't find model directory: %s" % path2str(data_path)) cls = get_lang_class(meta['lang']) nlp = cls(pipeline=meta.get('pipeline', True)) return nlp.from_disk(data_path, **overrides) def get_model_meta(path): """Get model meta.json from a directory path and validate its contents. path (unicode or Path): Path to model directory. RETURNS (dict): The model's meta data. """ model_path = ensure_path(path) if not model_path.exists(): raise ValueError("Can't find model directory: %s" % path2str(model_path)) meta_path = model_path / 'meta.json' if not meta_path.is_file(): raise IOError("Could not read meta.json from %s" % meta_path) meta = read_json(meta_path) for setting in ['lang', 'name', 'version']: if setting not in meta: raise IOError('No %s setting found in model meta.json' % setting) return meta def is_package(name): """Check if string maps to a package installed via pip. name (unicode): Name of package. RETURNS (bool): True if installed package, False if not. """ packages = pip.get_installed_distributions() for package in packages: if package.project_name.replace('-', '_') == name: return True return False def get_package_path(name): """Get the path to an installed package. name (unicode): Package name. RETURNS (Path): Path to installed package. """ # Here we're importing the module just to find it. This is worryingly # indirect, but it's otherwise very difficult to find the package. pkg = importlib.import_module(name) return Path(pkg.__file__).parent def is_in_jupyter(): """Check if user is running spaCy from a Jupyter notebook by detecting the IPython kernel. Mainly used for the displaCy visualizer. RETURNS (bool): True if in Jupyter, False if not. """ try: cfg = get_ipython().config if cfg['IPKernelApp']['parent_appname'] == 'ipython-notebook': return True except NameError: return False return False def get_cuda_stream(require=False): # TODO: Error and tell to install chainer if not found # Requires GPU return CudaStream() if CudaStream is not None else None def get_async(stream, numpy_array): if cupy is None: return numpy_array else: array = cupy.ndarray(numpy_array.shape, order='C', dtype=numpy_array.dtype) array.set(numpy_array, stream=stream) return array def itershuffle(iterable, bufsize=1000): """Shuffle an iterator. This works by holding `bufsize` items back and yielding them sometime later. Obviously, this is not unbiased – but should be good enough for batching. Larger bufsize means less bias. From https://gist.github.com/andres-erbsen/1307752 iterable (iterable): Iterator to shuffle. bufsize (int): Items to hold back. YIELDS (iterable): The shuffled iterator. """ iterable = iter(iterable) buf = [] try: while True: for i in range(random.randint(1, bufsize-len(buf))): buf.append(iterable.next()) random.shuffle(buf) for i in range(random.randint(1, bufsize)): if buf: yield buf.pop() else: break except StopIteration: random.shuffle(buf) while buf: yield buf.pop() raise StopIteration def env_opt(name, default=None): if type(default) is float: type_convert = float else: type_convert = int if 'SPACY_' + name.upper() in os.environ: value = type_convert(os.environ['SPACY_' + name.upper()]) print(name, "=", repr(value), "via", "$SPACY_" + name.upper()) return value elif name in os.environ: value = type_convert(os.environ[name]) print(name, "=", repr(value), "via", '$' + name) return value else: print(name, '=', repr(default), "by default") return default def read_regex(path): path = ensure_path(path) with path.open() as file_: entries = file_.read().split('\n') expression = '|'.join(['^' + re.escape(piece) for piece in entries if piece.strip()]) return re.compile(expression) def compile_prefix_regex(entries): if '(' in entries: # Handle deprecated data expression = '|'.join(['^' + re.escape(piece) for piece in entries if piece.strip()]) return re.compile(expression) else: expression = '|'.join(['^' + piece for piece in entries if piece.strip()]) return re.compile(expression) def compile_suffix_regex(entries): expression = '|'.join([piece + '$' for piece in entries if piece.strip()]) return re.compile(expression) def compile_infix_regex(entries): expression = '|'.join([piece for piece in entries if piece.strip()]) return re.compile(expression) def update_exc(base_exceptions, *addition_dicts): """Update and validate tokenizer exceptions. Will overwrite exceptions. base_exceptions (dict): Base exceptions. *addition_dicts (dict): Exceptions to add to the base dict, in order. RETURNS (dict): Combined tokenizer exceptions. """ exc = dict(base_exceptions) for additions in addition_dicts: for orth, token_attrs in additions.items(): if not all(isinstance(attr[ORTH], unicode_) for attr in token_attrs): msg = "Invalid value for ORTH in exception: key='%s', orths='%s'" raise ValueError(msg % (orth, token_attrs)) described_orth = ''.join(attr[ORTH] for attr in token_attrs) if orth != described_orth: raise ValueError("Invalid tokenizer exception: ORTH values " "combined don't match original string. " "key='%s', orths='%s'" % (orth, described_orth)) # overlap = set(exc.keys()).intersection(set(additions)) # assert not overlap, overlap exc.update(additions) exc = expand_exc(exc, "'", "’") return exc def expand_exc(excs, search, replace): """Find string in tokenizer exceptions, duplicate entry and replace string. For example, to add additional versions with typographic apostrophes. excs (dict): Tokenizer exceptions. search (unicode): String to find and replace. replace (unicode): Replacement. RETURNS (dict): Combined tokenizer exceptions. """ def _fix_token(token, search, replace): fixed = dict(token) fixed[ORTH] = fixed[ORTH].replace(search, replace) return fixed new_excs = dict(excs) for token_string, tokens in excs.items(): if search in token_string: new_key = token_string.replace(search, replace) new_value = [_fix_token(t, search, replace) for t in tokens] new_excs[new_key] = new_value return new_excs def normalize_slice(length, start, stop, step=None): if not (step is None or step == 1): raise ValueError("Stepped slices not supported in Span objects." "Try: list(tokens)[start:stop:step] instead.") if start is None: start = 0 elif start < 0: start += length start = min(length, max(0, start)) if stop is None: stop = length elif stop < 0: stop += length stop = min(length, max(start, stop)) assert 0 <= start <= stop <= length return start, stop def compounding(start, stop, compound): """Yield an infinite series of compounding values. Each time the generator is called, a value is produced by multiplying the previous value by the compound rate. EXAMPLE: >>> sizes = compounding(1., 10., 1.5) >>> assert next(sizes) == 1. >>> assert next(sizes) == 1 * 1.5 >>> assert next(sizes) == 1.5 * 1.5 """ def clip(value): return max(value, stop) if (start>stop) else min(value, stop) curr = float(start) while True: yield clip(curr) curr *= compound def decaying(start, stop, decay): """Yield an infinite series of linearly decaying values.""" def clip(value): return max(value, stop) if (start>stop) else min(value, stop) nr_upd = 1. while True: yield clip(start * 1./(1. + decay * nr_upd)) nr_upd += 1 def read_json(location): """Open and load JSON from file. location (Path): Path to JSON file. RETURNS (dict): Loaded JSON content. """ with location.open('r', encoding='utf8') as f: return ujson.load(f) def get_raw_input(description, default=False): """Get user input from the command line via raw_input / input. description (unicode): Text to display before prompt. default (unicode or False/None): Default value to display with prompt. RETURNS (unicode): User input. """ additional = ' (default: %s)' % default if default else '' prompt = ' %s%s: ' % (description, additional) user_input = input_(prompt) return user_input def to_bytes(getters, exclude): serialized = {} for key, getter in getters.items(): if key not in exclude: serialized[key] = getter() return msgpack.dumps(serialized) def from_bytes(bytes_data, setters, exclude): msg = msgpack.loads(bytes_data) for key, setter in setters.items(): if key not in exclude: setter(msg[key]) return msg def model_to_bytes(model): weights = [] metas = [] dims = [] queue = [model] i = 0 for layer in queue: if hasattr(layer, '_mem'): if isinstance(layer._mem.weights, numpy.ndarray): weights.append(layer._mem.weights) else: weights.append(layer._mem.weights.get()) metas.append(tuple(layer._mem._offsets)) dims.append(getattr(layer, '_dims', None)) i += 1 if hasattr(layer, '_layers'): queue.extend(layer._layers) data = {'metas': tuple(metas), 'weights': tuple(weights), 'dims': tuple(dims)} return msgpack.dumps(data) def model_from_bytes(model, bytes_data): data = msgpack.loads(bytes_data) metas = data['metas'] weights = data['weights'] dims = data['dims'] queue = [model] i = 0 for layer in queue: if hasattr(layer, '_mem'): params = weights[i] flat_mem = layer._mem._mem.ravel() flat_params = params.ravel() flat_mem[:flat_params.size] = flat_params layer._mem._offsets.update(metas[i]) if hasattr(layer, '_dims'): layer._dims.update(dims[i]) i += 1 if hasattr(layer, '_layers'): queue.extend(layer._layers) def print_table(data, title=None): """Print data in table format. data (dict or list of tuples): Label/value pairs. title (unicode or None): Title, will be printed above. """ if isinstance(data, dict): data = list(data.items()) tpl_row = ' {:<15}' * len(data[0]) table = '\n'.join([tpl_row.format(l, v) for l, v in data]) if title: print('\n \033[93m{}\033[0m'.format(title)) print('\n{}\n'.format(table)) def print_markdown(data, title=None): """Print data in GitHub-flavoured Markdown format for issues etc. data (dict or list of tuples): Label/value pairs. title (unicode or None): Title, will be rendered as headline 2. """ def excl_value(value): return Path(value).exists() # contains path (personal info) if isinstance(data, dict): data = list(data.items()) markdown = ["* **{}:** {}".format(l, v) for l, v in data if not excl_value(v)] if title: print("\n## {}".format(title)) print('\n{}\n'.format('\n'.join(markdown))) def prints(*texts, **kwargs): """Print formatted message (manual ANSI escape sequences to avoid dependency) *texts (unicode): Texts to print. Each argument is rendered as paragraph. **kwargs: 'title' becomes coloured headline. 'exits'=True performs sys exit. """ exits = kwargs.get('exits', None) title = kwargs.get('title', None) title = '\033[93m{}\033[0m\n'.format(_wrap(title)) if title else '' message = '\n\n'.join([_wrap(text) for text in texts]) print('\n{}{}\n'.format(title, message)) if exits is not None: sys.exit(exits) def _wrap(text, wrap_max=80, indent=4): """Wrap text at given width using textwrap module. text (unicode): Text to wrap. If it's a Path, it's converted to string. wrap_max (int): Maximum line length (indent is deducted). indent (int): Number of spaces for indentation. RETURNS (unicode): Wrapped text. """ indent = indent * ' ' wrap_width = wrap_max - len(indent) if isinstance(text, Path): text = path2str(text) return textwrap.fill(text, width=wrap_width, initial_indent=indent, subsequent_indent=indent, break_long_words=False, break_on_hyphens=False) def minify_html(html): """Perform a template-specific, rudimentary HTML minification for displaCy. Disclaimer: NOT a general-purpose solution, only removes indentation/newlines. html (unicode): Markup to minify. RETURNS (unicode): "Minified" HTML. """ return html.strip().replace(' ', '').replace('\n', '')