# coding: utf-8 from __future__ import unicode_literals import random import re import bz2 import datetime from spacy.gold import GoldParse from bin.wiki_entity_linking import kb_creator """ Process Wikipedia interlinks to generate a training dataset for the EL algorithm. Gold-standard entities are stored in one file in standoff format (by character offset). """ ENTITY_FILE = "gold_entities.csv" def now(): return datetime.datetime.now() def create_training(wikipedia_input, entity_def_input, training_output): wp_to_id = kb_creator.get_entity_to_id(entity_def_input) _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None) def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None): """ Read the XML wikipedia data to parse out training data: raw text data + positive instances """ title_regex = re.compile(r"(?<=).*(?=)") id_regex = re.compile(r"(?<=)\d*(?=)") read_ids = set() entityfile_loc = training_output / ENTITY_FILE with entityfile_loc.open("w", encoding="utf8") as entityfile: # write entity training header file _write_training_entity( outputfile=entityfile, article_id="article_id", alias="alias", entity="WD_id", start="start", end="end", ) with bz2.open(wikipedia_input, mode="rb") as file: line = file.readline() cnt = 0 article_text = "" article_title = None article_id = None reading_text = False reading_revision = False while line and (not limit or cnt < limit): if cnt % 1000000 == 0: print(now(), "processed", cnt, "lines of Wikipedia dump") clean_line = line.strip().decode("utf-8") if clean_line == "": reading_revision = True elif clean_line == "": reading_revision = False # Start reading new page if clean_line == "": article_text = "" article_title = None article_id = None # finished reading this page elif clean_line == "": if article_id: try: _process_wp_text( wp_to_id, entityfile, article_id, article_title, article_text.strip(), training_output, ) except Exception as e: print( "Error processing article", article_id, article_title, e ) else: print( "Done processing a page, but couldn't find an article_id ?", article_title, ) article_text = "" article_title = None article_id = None reading_text = False reading_revision = False # start reading text within a page if ").*(?= 2: reading_special_case = True if open_read == 2 and reading_text: reading_text = False reading_entity = True reading_mention = False # we just finished reading an entity if open_read == 0 and not reading_text: if "#" in entity_buffer or entity_buffer.startswith(":"): reading_special_case = True # Ignore cases with nested structures like File: handles etc if not reading_special_case: if not mention_buffer: mention_buffer = entity_buffer start = len(final_text) end = start + len(mention_buffer) qid = wp_to_id.get(entity_buffer, None) if qid: _write_training_entity( outputfile=entityfile, article_id=article_id, alias=mention_buffer, entity=qid, start=start, end=end, ) found_entities = True final_text += mention_buffer entity_buffer = "" mention_buffer = "" reading_text = True reading_entity = False reading_mention = False reading_special_case = False if found_entities: _write_training_article( article_id=article_id, clean_text=final_text, training_output=training_output, ) info_regex = re.compile(r"{[^{]*?}") htlm_regex = re.compile(r"<!--[^-]*-->") category_regex = re.compile(r"\[\[Category:[^\[]*]]") file_regex = re.compile(r"\[\[File:[^[\]]+]]") ref_regex = re.compile(r"<ref.*?>") # non-greedy ref_2_regex = re.compile(r"</ref.*?>") # non-greedy def _get_clean_wp_text(article_text): clean_text = article_text.strip() # remove bolding & italic markup clean_text = clean_text.replace("'''", "") clean_text = clean_text.replace("''", "") # remove nested {{info}} statements by removing the inner/smallest ones first and iterating try_again = True previous_length = len(clean_text) while try_again: clean_text = info_regex.sub( "", clean_text ) # non-greedy match excluding a nested { if len(clean_text) < previous_length: try_again = True else: try_again = False previous_length = len(clean_text) # remove HTML comments clean_text = htlm_regex.sub("", clean_text) # remove Category and File statements clean_text = category_regex.sub("", clean_text) clean_text = file_regex.sub("", clean_text) # remove multiple = while "==" in clean_text: clean_text = clean_text.replace("==", "=") clean_text = clean_text.replace(". =", ".") clean_text = clean_text.replace(" = ", ". ") clean_text = clean_text.replace("= ", ".") clean_text = clean_text.replace(" =", "") # remove refs (non-greedy match) clean_text = ref_regex.sub("", clean_text) clean_text = ref_2_regex.sub("", clean_text) # remove additional wikiformatting clean_text = re.sub(r"<blockquote>", "", clean_text) clean_text = re.sub(r"</blockquote>", "", clean_text) # change special characters back to normal ones clean_text = clean_text.replace(r"<", "<") clean_text = clean_text.replace(r">", ">") clean_text = clean_text.replace(r""", '"') clean_text = clean_text.replace(r"&nbsp;", " ") clean_text = clean_text.replace(r"&", "&") # remove multiple spaces while " " in clean_text: clean_text = clean_text.replace(" ", " ") return clean_text.strip() def _write_training_article(article_id, clean_text, training_output): file_loc = training_output / "{}.txt".format(article_id) with file_loc.open("w", encoding="utf8") as outputfile: outputfile.write(clean_text) def _write_training_entity(outputfile, article_id, alias, entity, start, end): line = "{}|{}|{}|{}|{}\n".format(article_id, alias, entity, start, end) outputfile.write(line) def is_dev(article_id): return article_id.endswith("3") def read_training(nlp, training_dir, dev, limit, kb=None): """ This method provides training examples that correspond to the entity annotations found by the nlp object. When kb is provided (for training), it will include negative training examples by using the candidate generator, and it will only keep positive training examples that can be found in the KB. When kb=None (for testing), it will include all positive examples only.""" entityfile_loc = training_dir / ENTITY_FILE data = [] # assume the data is written sequentially, so we can reuse the article docs current_article_id = None current_doc = None ents_by_offset = dict() skip_articles = set() total_entities = 0 with entityfile_loc.open("r", encoding="utf8") as file: for line in file: if not limit or len(data) < limit: fields = line.replace("\n", "").split(sep="|") article_id = fields[0] alias = fields[1] wd_id = fields[2] start = fields[3] end = fields[4] if ( dev == is_dev(article_id) and article_id != "article_id" and article_id not in skip_articles ): if not current_doc or (current_article_id != article_id): # parse the new article text file_name = article_id + ".txt" try: training_file = training_dir / file_name with training_file.open("r", encoding="utf8") as f: text = f.read() # threshold for convenience / speed of processing if len(text) < 30000: current_doc = nlp(text) current_article_id = article_id ents_by_offset = dict() for ent in current_doc.ents: sent_length = len(ent.sent) # custom filtering to avoid too long or too short sentences if 5 < sent_length < 100: offset = "{}_{}".format( ent.start_char, ent.end_char ) ents_by_offset[offset] = ent else: skip_articles.add(article_id) current_doc = None except Exception as e: print("Problem parsing article", article_id, e) skip_articles.add(article_id) # repeat checking this condition in case an exception was thrown if current_doc and (current_article_id == article_id): offset = "{}_{}".format(start, end) found_ent = ents_by_offset.get(offset, None) if found_ent: if found_ent.text != alias: skip_articles.add(article_id) current_doc = None else: sent = found_ent.sent.as_doc() gold_start = int(start) - found_ent.sent.start_char gold_end = int(end) - found_ent.sent.start_char gold_entities = {} found_useful = False for ent in sent.ents: entry = (ent.start_char, ent.end_char) gold_entry = (gold_start, gold_end) if entry == gold_entry: # add both pos and neg examples (in random order) # this will exclude examples not in the KB if kb: value_by_id = {} candidates = kb.get_candidates(alias) candidate_ids = [ c.entity_ for c in candidates ] random.shuffle(candidate_ids) for kb_id in candidate_ids: found_useful = True if kb_id != wd_id: value_by_id[kb_id] = 0.0 else: value_by_id[kb_id] = 1.0 gold_entities[entry] = value_by_id # if no KB, keep all positive examples else: found_useful = True value_by_id = {wd_id: 1.0} gold_entities[entry] = value_by_id # currently feeding the gold data one entity per sentence at a time # setting all other entities to empty gold dictionary else: gold_entities[entry] = {} if found_useful: gold = GoldParse(doc=sent, links=gold_entities) data.append((sent, gold)) total_entities += 1 if len(data) % 2500 == 0: print(" -read", total_entities, "entities") print(" -read", total_entities, "entities") return data