from __future__ import absolute_import from __future__ import unicode_literals import random from .gold import GoldParse from .scorer import Scorer from .gold import merge_sents class Trainer(object): '''Manage training of an NLP pipeline.''' def __init__(self, nlp, gold_tuples): self.nlp = nlp self.gold_tuples = gold_tuples def epochs(self, nr_epoch, augment_data=None, gold_preproc=False): def _epoch(): for raw_text, paragraph_tuples in self.gold_tuples: if gold_preproc: raw_text = None else: paragraph_tuples = merge_sents(paragraph_tuples) if augment_data is not None: raw_text, paragraph_tuples = augment_data(raw_text, paragraph_tuples) docs = self.make_docs(raw_text, paragraph_tuples) golds = self.make_golds(docs, paragraph_tuples) for doc, gold in zip(docs, golds): yield doc, gold for itn in range(nr_epoch): random.shuffle(self.gold_tuples) yield _epoch() def update(self, doc, gold): for process in self.nlp.pipeline: if hasattr(process, 'update'): process.update(doc, gold) process(doc) return doc def evaluate(self, dev_sents, gold_preproc=False): scorer = Scorer() for raw_text, paragraph_tuples in dev_sents: if gold_preproc: raw_text = None else: paragraph_tuples = merge_sents(paragraph_tuples) docs = self.make_docs(raw_text, paragraph_tuples) golds = self.make_golds(docs, paragraph_tuples) for doc, gold in zip(docs, golds): for process in self.nlp.pipeline: process(doc) scorer.score(doc, gold) return scorer def make_docs(self, raw_text, paragraph_tuples): if raw_text is not None: return [self.nlp.tokenizer(raw_text)] else: return [self.nlp.tokenizer.tokens_from_list(sent_tuples[0][1]) for sent_tuples in paragraph_tuples] def make_golds(self, docs, paragraph_tuples): if len(docs) == 1: return [GoldParse(docs[0], sent_tuples[0]) for sent_tuples in paragraph_tuples] else: return [GoldParse(doc, sent_tuples[0]) for doc, sent_tuples in zip(docs, paragraph_tuples)]