import random import numpy import pytest import spacy import srsly from spacy.lang.en import English from spacy.tokens import Doc, DocBin from spacy.training import Alignment, Corpus, Example, biluo_tags_to_offsets from spacy.training import biluo_tags_to_spans, docs_to_json, iob_to_biluo from spacy.training import offsets_to_biluo_tags, validate_distillation_examples from spacy.training.alignment_array import AlignmentArray from spacy.training.align import get_alignments from spacy.training.converters import json_to_docs from spacy.training.loop import train_while_improving from spacy.util import get_words_and_spaces, load_model_from_path, minibatch from spacy.util import load_config_from_str from thinc.api import compounding, Adam from ..util import make_tempdir @pytest.fixture def doc(): nlp = English() # make sure we get a new vocab every time # fmt: off words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."] tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."] pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"] morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin", "", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "", "NounType=prop|Number=sing", "PunctType=peri"] # head of '.' is intentionally nonprojective for testing heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5] deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"] lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."] ents = ["O"] * len(words) ents[0] = "B-PERSON" ents[1] = "I-PERSON" ents[5] = "B-LOC" ents[6] = "I-LOC" ents[8] = "B-GPE" cats = {"TRAVEL": 1.0, "BAKING": 0.0} # fmt: on doc = Doc( nlp.vocab, words=words, tags=tags, pos=pos, morphs=morphs, heads=heads, deps=deps, lemmas=lemmas, ents=ents, ) doc.cats = cats return doc @pytest.fixture() def merged_dict(): return { "ids": [1, 2, 3, 4, 5, 6, 7], "words": ["Hi", "there", "everyone", "It", "is", "just", "me"], "spaces": [True, True, True, True, True, True, False], "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"], "sent_starts": [1, 0, 0, 1, 0, 0, 0], } @pytest.fixture def vocab(): nlp = English() return nlp.vocab @pytest.mark.issue(999) def test_issue999(): """Test that adding entities and resuming training works passably OK. There are two issues here: 1) We have to re-add labels. This isn't very nice. 2) There's no way to set the learning rate for the weight update, so we end up out-of-scale, causing it to learn too fast. """ TRAIN_DATA = [ ["hey", []], ["howdy", []], ["hey there", []], ["hello", []], ["hi", []], ["i'm looking for a place to eat", []], ["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]], ["show me chinese restaurants", [(8, 15, "CUISINE")]], ["show me chines restaurants", [(8, 14, "CUISINE")]], ] nlp = English() ner = nlp.add_pipe("ner") for _, offsets in TRAIN_DATA: for start, end, label in offsets: ner.add_label(label) nlp.initialize() for itn in range(20): random.shuffle(TRAIN_DATA) for raw_text, entity_offsets in TRAIN_DATA: example = Example.from_dict( nlp.make_doc(raw_text), {"entities": entity_offsets} ) nlp.update([example]) with make_tempdir() as model_dir: nlp.to_disk(model_dir) nlp2 = load_model_from_path(model_dir) for raw_text, entity_offsets in TRAIN_DATA: doc = nlp2(raw_text) ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents} for start, end, label in entity_offsets: if (start, end) in ents: assert ents[(start, end)] == label break else: if entity_offsets: raise Exception(ents) @pytest.mark.issue(4402) def test_issue4402(): json_data = { "id": 0, "paragraphs": [ { "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.", "sentences": [ { "tokens": [ {"id": 0, "orth": "How", "ner": "O"}, {"id": 1, "orth": "should", "ner": "O"}, {"id": 2, "orth": "I", "ner": "O"}, {"id": 3, "orth": "cook", "ner": "O"}, {"id": 4, "orth": "bacon", "ner": "O"}, {"id": 5, "orth": "in", "ner": "O"}, {"id": 6, "orth": "an", "ner": "O"}, {"id": 7, "orth": "oven", "ner": "O"}, {"id": 8, "orth": "?", "ner": "O"}, ], "brackets": [], }, { "tokens": [ {"id": 9, "orth": "\n", "ner": "O"}, {"id": 10, "orth": "I", "ner": "O"}, {"id": 11, "orth": "'ve", "ner": "O"}, {"id": 12, "orth": "heard", "ner": "O"}, {"id": 13, "orth": "of", "ner": "O"}, {"id": 14, "orth": "people", "ner": "O"}, {"id": 15, "orth": "cooking", "ner": "O"}, {"id": 16, "orth": "bacon", "ner": "O"}, {"id": 17, "orth": "in", "ner": "O"}, {"id": 18, "orth": "an", "ner": "O"}, {"id": 19, "orth": "oven", "ner": "O"}, {"id": 20, "orth": ".", "ner": "O"}, ], "brackets": [], }, ], "cats": [ {"label": "baking", "value": 1.0}, {"label": "not_baking", "value": 0.0}, ], }, { "raw": "What is the difference between white and brown eggs?\n", "sentences": [ { "tokens": [ {"id": 0, "orth": "What", "ner": "O"}, {"id": 1, "orth": "is", "ner": "O"}, {"id": 2, "orth": "the", "ner": "O"}, {"id": 3, "orth": "difference", "ner": "O"}, {"id": 4, "orth": "between", "ner": "O"}, {"id": 5, "orth": "white", "ner": "O"}, {"id": 6, "orth": "and", "ner": "O"}, {"id": 7, "orth": "brown", "ner": "O"}, {"id": 8, "orth": "eggs", "ner": "O"}, {"id": 9, "orth": "?", "ner": "O"}, ], "brackets": [], }, {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []}, ], "cats": [ {"label": "baking", "value": 0.0}, {"label": "not_baking", "value": 1.0}, ], }, ], } nlp = English() attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"] with make_tempdir() as tmpdir: output_file = tmpdir / "test4402.spacy" docs = json_to_docs([json_data]) data = DocBin(docs=docs, attrs=attrs).to_bytes() with output_file.open("wb") as file_: file_.write(data) reader = Corpus(output_file) train_data = list(reader(nlp)) assert len(train_data) == 2 split_train_data = [] for eg in train_data: split_train_data.extend(eg.split_sents()) assert len(split_train_data) == 4 CONFIG_7029 = """ [nlp] lang = "en" pipeline = ["tok2vec", "tagger"] [components] [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v1" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode:width} attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v1" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} upstream = "*" """ @pytest.mark.issue(7029) def test_issue7029(): """Test that an empty document doesn't mess up an entire batch.""" TRAIN_DATA = [ ("I like green eggs", {"tags": ["N", "V", "J", "N"]}), ("Eat blue ham", {"tags": ["V", "J", "N"]}), ] nlp = English.from_config(load_config_from_str(CONFIG_7029)) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) texts = ["first", "second", "third", "fourth", "and", "then", "some", ""] docs1 = list(nlp.pipe(texts, batch_size=1)) docs2 = list(nlp.pipe(texts, batch_size=4)) assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]] def test_gold_biluo_U(en_vocab): words = ["I", "flew", "to", "London", "."] spaces = [True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to London"), "LOC")] tags = offsets_to_biluo_tags(doc, entities) assert tags == ["O", "O", "O", "U-LOC", "O"] def test_gold_biluo_BL(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "."] spaces = [True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")] tags = offsets_to_biluo_tags(doc, entities) assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"] def test_gold_biluo_BIL(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] tags = offsets_to_biluo_tags(doc, entities) assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] def test_gold_biluo_overlap(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [ (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), (len("I flew to "), len("I flew to San Francisco"), "LOC"), ] with pytest.raises(ValueError): offsets_to_biluo_tags(doc, entities) def test_gold_biluo_misalign(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley."] spaces = [True, True, True, True, True, False] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] with pytest.warns(UserWarning): tags = offsets_to_biluo_tags(doc, entities) assert tags == ["O", "O", "O", "-", "-", "-"] def test_example_constructor(en_vocab): words = ["I", "like", "stuff"] tags = ["NOUN", "VERB", "NOUN"] tag_ids = [en_vocab.strings.add(tag) for tag in tags] predicted = Doc(en_vocab, words=words) reference = Doc(en_vocab, words=words) reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64")) example = Example(predicted, reference) tags = example.get_aligned("TAG", as_string=True) assert tags == ["NOUN", "VERB", "NOUN"] def test_example_from_dict_tags(en_vocab): words = ["I", "like", "stuff"] tags = ["NOUN", "VERB", "NOUN"] predicted = Doc(en_vocab, words=words) example = Example.from_dict(predicted, {"TAGS": tags}) tags = example.get_aligned("TAG", as_string=True) assert tags == ["NOUN", "VERB", "NOUN"] def test_example_from_dict_no_ner(en_vocab): words = ["a", "b", "c", "d"] spaces = [True, True, False, True] predicted = Doc(en_vocab, words=words, spaces=spaces) example = Example.from_dict(predicted, {"words": words}) ner_tags = example.get_aligned_ner() assert ner_tags == [None, None, None, None] def test_example_from_dict_some_ner(en_vocab): words = ["a", "b", "c", "d"] spaces = [True, True, False, True] predicted = Doc(en_vocab, words=words, spaces=spaces) example = Example.from_dict( predicted, {"words": words, "entities": ["U-LOC", None, None, None]} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["U-LOC", None, None, None] def test_validate_distillation_examples(en_vocab): words = ["a", "b", "c", "d"] spaces = [True, True, False, True] predicted = Doc(en_vocab, words=words, spaces=spaces) example = Example.from_dict(predicted, {}) validate_distillation_examples([example], "test_validate_distillation_examples") example = Example.from_dict(predicted, {"words": words + ["e"]}) with pytest.raises(ValueError, match=r"distillation"): validate_distillation_examples([example], "test_validate_distillation_examples") @pytest.mark.filterwarnings("ignore::UserWarning") def test_json_to_docs_no_ner(en_vocab): data = [ { "id": 1, "paragraphs": [ { "sentences": [ { "tokens": [ {"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."}, { "dep": "nsubj", "head": 1, "tag": "NNP", "orth": "Haag", }, { "dep": "ROOT", "head": 0, "tag": "VBZ", "orth": "plays", }, { "dep": "dobj", "head": -1, "tag": "NNP", "orth": "Elianti", }, {"dep": "punct", "head": -2, "tag": ".", "orth": "."}, ] } ] } ], } ] docs = list(json_to_docs(data)) assert len(docs) == 1 for doc in docs: assert not doc.has_annotation("ENT_IOB") for token in doc: assert token.ent_iob == 0 eg = Example( Doc( doc.vocab, words=[w.text for w in doc], spaces=[bool(w.whitespace_) for w in doc], ), doc, ) ner_tags = eg.get_aligned_ner() assert ner_tags == [None, None, None, None, None] def test_split_sentences(en_vocab): # fmt: off words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"] gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"] sent_starts = [True, False, False, False, False, False, True, False, False, False] # fmt: on doc = Doc(en_vocab, words=words) example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts}) assert example.text == "I flew to San Francisco Valley had loads of fun " split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "I flew to San Francisco Valley " assert split_examples[1].text == "had loads of fun " # fmt: off words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"] gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"] sent_starts = [True, False, False, False, False, True, False, False] # fmt: on doc = Doc(en_vocab, words=words) example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts}) assert example.text == "I flew to San Francisco Valley had loads of fun " split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "I flew to San Francisco Valley " assert split_examples[1].text == "had loads of fun " def test_gold_biluo_one_to_many(en_vocab, en_tokenizer): words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."] spaces = [True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) prefix = "Mr and Mrs Smith flew to " entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")] gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "U-LOC", "O"] entities = [ (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] # fmt: off gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."] # fmt: on example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"] entities = [ (len("Mr and "), len("Mr and Mrs"), "PERSON"), # "Mrs" is a Person (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] # fmt: off gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."] # fmt: on example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", None, "O", "U-LOC", "O"] def test_gold_biluo_many_to_one(en_vocab, en_tokenizer): words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) prefix = "Mr and Mrs Smith flew to " entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")] gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] entities = [ (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] assert ner_tags == expected def test_gold_biluo_misaligned(en_vocab, en_tokenizer): words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) prefix = "Mr and Mrs Smith flew to " entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")] gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"] entities = [ (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"] def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer): # additional whitespace tokens in GoldParse words words, spaces = get_words_and_spaces( ["I", "flew", "to", "San Francisco", "Valley", "."], "I flew to San Francisco Valley.", ) doc = Doc(en_vocab, words=words, spaces=spaces) prefix = "I flew to " entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")] gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."] gold_spaces = [True, True, False, True, False, False] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"] def test_gold_biluo_4791(en_vocab, en_tokenizer): doc = en_tokenizer("I'll return the A54 amount") gold_words = ["I", "'ll", "return", "the", "A", "54", "amount"] gold_spaces = [False, True, True, True, False, True, False] entities = [(16, 19, "MONEY")] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"] doc = en_tokenizer("I'll return the $54 amount") gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"] gold_spaces = [False, True, True, True, False, True, False] entities = [(16, 19, "MONEY")] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"] def test_roundtrip_offsets_biluo_conversion(en_tokenizer): text = "I flew to Silicon Valley via London." biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] offsets = [(10, 24, "LOC"), (29, 35, "GPE")] doc = en_tokenizer(text) biluo_tags_converted = offsets_to_biluo_tags(doc, offsets) assert biluo_tags_converted == biluo_tags offsets_converted = biluo_tags_to_offsets(doc, biluo_tags) offsets_converted = [ent for ent in offsets if ent[2]] assert offsets_converted == offsets def test_biluo_spans(en_tokenizer): doc = en_tokenizer("I flew to Silicon Valley via London.") biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] spans = biluo_tags_to_spans(doc, biluo_tags) spans = [span for span in spans if span.label_] assert len(spans) == 2 assert spans[0].text == "Silicon Valley" assert spans[0].label_ == "LOC" assert spans[1].text == "London" assert spans[1].label_ == "GPE" def test_aligned_spans_y2x(en_vocab, en_tokenizer): words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."] spaces = [True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) prefix = "Mr and Mrs Smith flew to " entities = [ (0, len("Mr and Mrs Smith"), "PERSON"), (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] # fmt: off tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."] # fmt: on example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities}) ents_ref = example.reference.ents assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)] ents_y2x = example.get_aligned_spans_y2x(ents_ref) assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)] def test_aligned_spans_x2y(en_vocab, en_tokenizer): text = "Mr and Mrs Smith flew to San Francisco Valley" nlp = English() patterns = [ {"label": "PERSON", "pattern": "Mr and Mrs Smith"}, {"label": "LOC", "pattern": "San Francisco Valley"}, ] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) doc = nlp(text) assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)] prefix = "Mr and Mrs Smith flew to " entities = [ (0, len("Mr and Mrs Smith"), "PERSON"), (len(prefix), len(prefix + "San Francisco Valley"), "LOC"), ] tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"] example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities}) assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)] # Ensure that 'get_aligned_spans_x2y' has the aligned entities correct ents_pred = example.predicted.ents assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)] ents_x2y = example.get_aligned_spans_x2y(ents_pred) assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)] def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer): text = "I flew to San Francisco Valley" nlp = English() doc = nlp(text) # the reference doc has overlapping spans gold_doc = nlp.make_doc(text) spans = [] prefix = "I flew to " spans.append( gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY") ) spans.append( gold_doc.char_span( len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY" ) ) spans_key = "overlap_ents" gold_doc.spans[spans_key] = spans example = Example(doc, gold_doc) spans_gold = example.reference.spans[spans_key] assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)] # Ensure that 'get_aligned_spans_y2x' has the aligned entities correct spans_y2x_no_overlap = example.get_aligned_spans_y2x( spans_gold, allow_overlap=False ) assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)] spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True) assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)] def test_gold_ner_missing_tags(en_tokenizer): doc = en_tokenizer("I flew to Silicon Valley via London.") biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] example = Example.from_dict(doc, {"entities": biluo_tags}) assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2] def test_projectivize(en_tokenizer): doc = en_tokenizer("He pretty quickly walks away") heads = [3, 2, 3, 3, 2] deps = ["dep"] * len(heads) example = Example.from_dict(doc, {"heads": heads, "deps": deps}) proj_heads, proj_labels = example.get_aligned_parse(projectivize=True) nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False) assert proj_heads == [3, 2, 3, 3, 3] assert nonproj_heads == [3, 2, 3, 3, 2] # Test single token documents doc = en_tokenizer("Conrail") heads = [0] deps = ["dep"] example = Example.from_dict(doc, {"heads": heads, "deps": deps}) proj_heads, proj_labels = example.get_aligned_parse(projectivize=True) assert proj_heads == heads assert proj_labels == deps # Test documents with no alignments doc_a = Doc( doc.vocab, words=["Double-Jointed"], spaces=[False], deps=["ROOT"], heads=[0] ) doc_b = Doc( doc.vocab, words=["Double", "-", "Jointed"], spaces=[True, True, True], deps=["amod", "punct", "ROOT"], heads=[2, 2, 2], ) example = Example(doc_a, doc_b) proj_heads, proj_deps = example.get_aligned_parse(projectivize=True) assert proj_heads == [None] assert proj_deps == [None] def test_iob_to_biluo(): good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"] good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"] bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"] converted_biluo = iob_to_biluo(good_iob) assert good_biluo == converted_biluo with pytest.raises(ValueError): iob_to_biluo(bad_iob) def test_roundtrip_docs_to_docbin(doc): text = doc.text idx = [t.idx for t in doc] tags = [t.tag_ for t in doc] pos = [t.pos_ for t in doc] morphs = [str(t.morph) for t in doc] lemmas = [t.lemma_ for t in doc] deps = [t.dep_ for t in doc] heads = [t.head.i for t in doc] cats = doc.cats ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents] # roundtrip to DocBin with make_tempdir() as tmpdir: # use a separate vocab to test that all labels are added reloaded_nlp = English() json_file = tmpdir / "roundtrip.json" srsly.write_json(json_file, [docs_to_json(doc)]) output_file = tmpdir / "roundtrip.spacy" DocBin(docs=[doc]).to_disk(output_file) reader = Corpus(output_file) reloaded_examples = list(reader(reloaded_nlp)) assert len(doc) == sum(len(eg) for eg in reloaded_examples) reloaded_example = reloaded_examples[0] assert text == reloaded_example.reference.text assert idx == [t.idx for t in reloaded_example.reference] assert tags == [t.tag_ for t in reloaded_example.reference] assert pos == [t.pos_ for t in reloaded_example.reference] assert morphs == [str(t.morph) for t in reloaded_example.reference] assert lemmas == [t.lemma_ for t in reloaded_example.reference] assert deps == [t.dep_ for t in reloaded_example.reference] assert heads == [t.head.i for t in reloaded_example.reference] assert ents == [ (e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents ] assert "TRAVEL" in reloaded_example.reference.cats assert "BAKING" in reloaded_example.reference.cats assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"] assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"] def test_docbin_user_data_serialized(doc): doc.user_data["check"] = True nlp = English() with make_tempdir() as tmpdir: output_file = tmpdir / "userdata.spacy" DocBin(docs=[doc], store_user_data=True).to_disk(output_file) reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab) reloaded_doc = list(reloaded_docs)[0] assert reloaded_doc.user_data["check"] == True def test_docbin_user_data_not_serialized(doc): # this isn't serializable, but that shouldn't cause an error doc.user_data["check"] = set() nlp = English() with make_tempdir() as tmpdir: output_file = tmpdir / "userdata.spacy" DocBin(docs=[doc], store_user_data=False).to_disk(output_file) reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab) reloaded_doc = list(reloaded_docs)[0] assert "check" not in reloaded_doc.user_data @pytest.mark.parametrize( "tokens_a,tokens_b,expected", [ (["a", "b", "c"], ["ab", "c"], ([[0], [0], [1]], [[0, 1], [2]])), ( ["a", "b", '"', "c"], ['ab"', "c"], ([[0], [0], [0], [1]], [[0, 1, 2], [3]]), ), (["a", "bc"], ["ab", "c"], ([[0], [0, 1]], [[0, 1], [1]])), ( ["ab", "c", "d"], ["a", "b", "cd"], ([[0, 1], [2], [2]], [[0], [0], [1, 2]]), ), ( ["a", "b", "cd"], ["a", "b", "c", "d"], ([[0], [1], [2, 3]], [[0], [1], [2], [2]]), ), ([" ", "a"], ["a"], ([[], [0]], [[1]])), ( ["a", "''", "'", ","], ["a'", "''", ","], ([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]), ), ], ) def test_align(tokens_a, tokens_b, expected): # noqa a2b, b2a = get_alignments(tokens_a, tokens_b) assert (a2b, b2a) == expected # noqa # check symmetry a2b, b2a = get_alignments(tokens_b, tokens_a) # noqa assert (b2a, a2b) == expected # noqa def test_goldparse_startswith_space(en_tokenizer): text = " a" doc = en_tokenizer(text) gold_words = ["a"] entities = ["U-DATE"] deps = ["ROOT"] heads = [0] example = Example.from_dict( doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "U-DATE"] assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"] def test_goldparse_endswith_space(en_tokenizer): text = "a\n" doc = en_tokenizer(text) gold_words = ["a"] entities = ["U-DATE"] deps = ["ROOT"] heads = [0] example = Example.from_dict( doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["U-DATE", "O"] assert example.get_aligned("DEP", as_string=True) == ["ROOT", None] def test_gold_constructor(): """Test that the Example constructor works fine""" nlp = English() doc = nlp("This is a sentence") example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}}) assert example.get_aligned("ORTH", as_string=True) == [ "This", "is", "a", "sentence", ] assert example.reference.cats["cat1"] assert not example.reference.cats["cat2"] def test_tuple_format_implicit(): """Test tuple format""" train_data = [ ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}), ( "Spotify steps up Asia expansion", {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]}, ), ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}), ] _train_tuples(train_data) def test_tuple_format_implicit_invalid(): """Test that an error is thrown for an implicit invalid field""" train_data = [ ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}), ( "Spotify steps up Asia expansion", {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]}, ), ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}), ] with pytest.raises(KeyError): _train_tuples(train_data) def _train_tuples(train_data): nlp = English() ner = nlp.add_pipe("ner") ner.add_label("ORG") ner.add_label("LOC") train_examples = [] for t in train_data: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize() for i in range(5): losses = {} batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(batch, sgd=optimizer, losses=losses) def test_split_sents(merged_dict): nlp = English() example = Example.from_dict( Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]), merged_dict, ) assert example.text == "Hi there everyone It is just me" split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "Hi there everyone " assert split_examples[1].text == "It is just me" token_annotation_1 = split_examples[0].to_dict()["token_annotation"] assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"] assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"] assert token_annotation_1["SENT_START"] == [1, 0, 0] token_annotation_2 = split_examples[1].to_dict()["token_annotation"] assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"] assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"] assert token_annotation_2["SENT_START"] == [1, 0, 0, 0] def test_alignment(): other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1] assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7] def test_alignment_array(): a = AlignmentArray([[0, 1, 2], [3], [], [4, 5, 6, 7], [8, 9]]) assert list(a.data) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] assert list(a.lengths) == [3, 1, 0, 4, 2] assert list(a[3]) == [4, 5, 6, 7] assert list(a[2]) == [] assert list(a[-2]) == [4, 5, 6, 7] assert list(a[1:4]) == [3, 4, 5, 6, 7] assert list(a[1:]) == [3, 4, 5, 6, 7, 8, 9] assert list(a[:3]) == [0, 1, 2, 3] assert list(a[:]) == list(a.data) assert list(a[0:0]) == [] assert list(a[3:3]) == [] assert list(a[-1:-1]) == [] with pytest.raises(ValueError, match=r"only supports slicing with a step of 1"): a[:4:-1] with pytest.raises( ValueError, match=r"only supports indexing using an int or a slice" ): a[[0, 1, 3]] a = AlignmentArray([[], [1, 2, 3], [4, 5]]) assert list(a[0]) == [] assert list(a[0:1]) == [] assert list(a[2]) == [4, 5] assert list(a[0:2]) == [1, 2, 3] a = AlignmentArray([[1, 2, 3], [4, 5], []]) assert list(a[-1]) == [] assert list(a[-2:]) == [4, 5] def test_alignment_case_insensitive(): other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1] assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7] def test_alignment_complex(): other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5] def test_alignment_complex_example(en_vocab): other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."] predicted = Doc( en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False] ) reference = Doc( en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False] ) assert predicted.text == "i listened to obama's podcasts." assert reference.text == "i listened to obama's podcasts." example = Example(predicted, reference) align = example.alignment assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5] def test_alignment_different_texts(): other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."] with pytest.raises(ValueError): Alignment.from_strings(other_tokens, spacy_tokens) def test_alignment_spaces(en_vocab): # single leading whitespace other_tokens = [" ", "i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [1, 1, 1, 2, 3, 4, 5, 6] # multiple leading whitespace tokens other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [2, 2, 2, 3, 4, 5, 6, 7] # both with leading whitespace, not identical other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [1, 0, 3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 5, 5, 6, 6] assert list(align.y2x.lengths) == [1, 1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [0, 2, 2, 2, 3, 4, 5, 6, 7] # same leading whitespace, different tokenization other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."] spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [1, 1, 3, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 0, 1, 2, 3, 4, 5, 5, 6, 6] assert list(align.y2x.lengths) == [2, 1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [0, 1, 2, 2, 2, 3, 4, 5, 6, 7] # only one with trailing whitespace other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " "] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 0] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2] assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5] # different trailing whitespace other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 0] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 1] assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6] # same trailing whitespace, different tokenization other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "] spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 1] assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6, 6] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 2] assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6, 7] # differing whitespace is allowed other_tokens = ["a", " \n ", "b", "c"] spacy_tokens = ["a", "b", " ", "c"] align = Alignment.from_strings(other_tokens, spacy_tokens) assert list(align.x2y.data) == [0, 1, 3] assert list(align.y2x.data) == [0, 2, 3] # other differences in whitespace are allowed other_tokens = [" ", "a"] spacy_tokens = [" ", "a", " "] align = Alignment.from_strings(other_tokens, spacy_tokens) other_tokens = ["a", " "] spacy_tokens = ["a", " "] align = Alignment.from_strings(other_tokens, spacy_tokens) def test_retokenized_docs(doc): a = doc.to_array(["TAG"]) doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) example = Example(doc1, doc2) # fmt: off expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."] expected2 = [None, "sister", "flew", "to", None, "via", "London", "."] # fmt: on assert example.get_aligned("ORTH", as_string=True) == expected1 with doc1.retokenize() as retokenizer: retokenizer.merge(doc1[0:2]) retokenizer.merge(doc1[5:7]) assert example.get_aligned("ORTH", as_string=True) == expected2 def test_training_before_update(doc): def before_update(nlp, args): assert args["step"] == 0 assert args["epoch"] == 1 # Raise an error here as the rest of the loop # will not run to completion due to uninitialized # models. raise ValueError("ran_before_update") def generate_batch(): yield 1, [Example(doc, doc)] nlp = spacy.blank("en") nlp.add_pipe("tagger") optimizer = Adam() generator = train_while_improving( nlp, optimizer, generate_batch(), lambda: None, dropout=0.1, eval_frequency=100, accumulate_gradient=10, patience=10, max_steps=100, exclude=[], annotating_components=[], before_update=before_update, ) with pytest.raises(ValueError, match="ran_before_update"): for _ in generator: pass